IMPROVED EIGENVALUE SUMS FOR INFERRING QUANTUM BILLIARD GEOMETRY

被引:13
|
作者
BERRY, MV
机构
来源
关键词
D O I
10.1088/0305-4470/20/9/026
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:2389 / 2403
页数:15
相关论文
共 50 条
  • [1] A relation between billiard geometry and the temperature of its eigenvalue gas
    Stockmann, HJ
    Stoffregen, U
    Kollmann, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (01): : 129 - 141
  • [2] A relation between billiard geometry and the temperature of its eigenvalue gas
    Stoeckmann, H.-J.
    Stoffregen, U.
    Kollmann, M.
    Journal of Physics A: Mathematical and General, 30 (01):
  • [3] Solving quantum billiard eigenvalue problems with physics-informed machine learning
    Holliday, Elliott G. G.
    Lindner, John F. F.
    Ditto, William L. L.
    AIP ADVANCES, 2023, 13 (08)
  • [4] Subadditivity of eigenvalue sums
    Uchiyama, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (05) : 1405 - 1412
  • [5] Geometry induced quantum interference: A continuous evolution from square to Sinai billiard
    Taylor, RP
    Newbury, R
    Sachrajda, AS
    Feng, Y
    Coleridge, PT
    Delage, A
    Kelly, PJ
    Wasilewski, Z
    Zawadzki, P
    SUPERLATTICES AND MICROSTRUCTURES, 1996, 20 (03) : 297 - 305
  • [6] Conical quantum billiard
    Liboff, RL
    LETTERS IN MATHEMATICAL PHYSICS, 1997, 42 (04) : 389 - 391
  • [7] Quantum billiard chaos
    Liboff, RL
    PHYSICS LETTERS A, 2000, 269 (04) : 230 - 233
  • [8] The Hexagon Quantum Billiard
    Richard L. Liboff
    Joseph Greenberg
    Journal of Statistical Physics, 2001, 105 : 389 - 402
  • [9] Elliptic quantum billiard
    Waalkens, H
    Wiersig, J
    Dullin, HR
    ANNALS OF PHYSICS, 1997, 260 (01) : 50 - 90
  • [10] Conical Quantum Billiard
    Richard L. Liboff
    Letters in Mathematical Physics, 1997, 42 : 389 - 391