IMPROVED EIGENVALUE SUMS FOR INFERRING QUANTUM BILLIARD GEOMETRY

被引:13
|
作者
BERRY, MV
机构
来源
关键词
D O I
10.1088/0305-4470/20/9/026
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:2389 / 2403
页数:15
相关论文
共 50 条
  • [31] Quantum chaos for the vibrating rectangular billiard
    Porter, MA
    Liboff, RL
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (09): : 2317 - 2337
  • [32] THE POLYGON QUANTUM-BILLIARD PROBLEM
    LIBOFF, RL
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (02) : 596 - 607
  • [33] Sensitivity to perturbations in a quantum chaotic billiard
    Wisniacki, DA
    Vergini, EG
    Pastawski, HM
    Cucchietti, FM
    PHYSICAL REVIEW E, 2002, 65 (05):
  • [34] REDUCING THE TRIANGULAR QUANTUM BILLIARD PROBLEM
    GAUDIN, M
    JOURNAL DE PHYSIQUE, 1986, 47 (04): : 581 - 594
  • [35] Manifestation of quantum-billiard eigenvalue statistics from subthreshold emission of vertical-cavity surface-emitting lasers
    Chen, Y. F.
    Yu, Y. T.
    Chiang, P. Y.
    Tuan, P. H.
    Huang, Y. J.
    Liang, H. C.
    Huang, K. F.
    PHYSICAL REVIEW E, 2011, 83 (01):
  • [36] WAVE CHAOS IN SINGULAR QUANTUM BILLIARD
    SEBA, P
    PHYSICAL REVIEW LETTERS, 1990, 64 (16) : 1855 - 1858
  • [37] Sensitivity to perturbations in a quantum chaotic billiard
    Wisniacki, Diego A.
    Vergini, Eduardo G.
    Pastawski, Horacio M.
    Cucchietti, Fernando M.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (05): : 1 - 055206
  • [38] Multifractal Eigenfunctions for a Singular Quantum Billiard
    Keating, Jonathan P.
    Ueberschar, Henrik
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 389 (01) : 543 - 569
  • [39] On the asymptotics of the shifted sums of Hecke eigenvalue squares
    Kim, Jiseong
    FORUM MATHEMATICUM, 2023, 35 (02) : 297 - 328
  • [40] Dirichlet eigenvalue sums on triangles are minimal for equilaterals
    Laugesen, Richard Snyder
    Siudeja, Bartlomiej Andrzej
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2011, 19 (05) : 855 - 885