Domination number and Laplacian eigenvalue distribution

被引:18
|
作者
Hedetniemi, Stephen T. [1 ]
Jacobs, David P. [1 ]
Trevisan, Vilmar [2 ]
机构
[1] Clemson Univ, Sch Comp, Clemson, SC 29634 USA
[2] Univ Fed Rio Grande do Sul, Inst Matemat, BR-91509900 Porto Alegre, RS, Brazil
关键词
GRAPHS; TREES;
D O I
10.1016/j.ejc.2015.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let m(G)(I) denote the number of Laplacian eigenvalues of a graph G in an interval I. Our main result is that for graphs having domination number gamma, m(G)[0, 1) <= gamma, improving existing bounds in the literature. For many graphs, m(G)[0, 1) = gamma, or m(G)[0, 1) = gamma-1. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:66 / 71
页数:6
相关论文
共 50 条
  • [1] Laplacian eigenvalue distribution, diameter and domination number of trees
    Guo, Jiaxin
    Xue, Jie
    Liu, Ruifang
    LINEAR & MULTILINEAR ALGEBRA, 2024,
  • [2] Laplacian eigenvalue distribution, diameter and domination number of trees
    Guo, Jiaxin
    Xue, Jie
    Liu, Ruifang
    arXiv, 2022,
  • [3] Domination number and Laplacian eigenvalue of trees
    Xue, Jie
    Liu, Ruifang
    Yu, Guanglong
    Shu, Jinlong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 592 : 210 - 227
  • [4] Domination number and Laplacian eigenvalue of trees
    Xue J.
    Liu R.
    Yu G.
    Shu J.
    Linear Algebra and Its Applications, 2020, 592 : 210 - 227
  • [5] Vertex-connectivity, chromatic number, domination number, maximum degree and Laplacian eigenvalue distribution
    Wang, Long
    Yan, Chunyu
    Fang, Xianwen
    Geng, Xianya
    Tian, Fenglei
    Linear Algebra and Its Applications, 2021, 607 : 307 - 318
  • [6] Vertex-connectivity, chromatic number, domination number, maximum degree and Laplacian eigenvalue distribution
    Wang, Long
    Yan, Chunyu
    Fang, Xianwen
    Geng, Xianya
    Tian, Fenglei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 607 : 307 - 318
  • [7] A Sharp Upper Bound on the Least Signless Laplacian Eigenvalue Using Domination Number
    Chang-Xiang He
    Min Zhou
    Graphs and Combinatorics, 2014, 30 : 1183 - 1192
  • [8] A Sharp Upper Bound on the Least Signless Laplacian Eigenvalue Using Domination Number
    He, Chang-Xiang
    Zhou, Min
    GRAPHS AND COMBINATORICS, 2014, 30 (05) : 1183 - 1192
  • [9] Laplacian eigenvalue distribution of a graph with given independence number
    Choi, Jinwon
    Suil, O.
    Park, Jooyeon
    Wang, Zhiwen
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 448
  • [10] Classification of graphs by Laplacian eigenvalue distribution and independence number
    Choi, Jinwon
    Moon, Sunyo
    Park, Seungkook
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (18): : 2877 - 2893