Laplacian eigenvalue distribution of a graph with given independence number

被引:0
|
作者
Choi, Jinwon [1 ,2 ]
Suil, O. [3 ]
Park, Jooyeon [4 ]
Wang, Zhiwen [5 ]
机构
[1] Sookmyung Womens Univ, Dept Math, Seoul 04310, South Korea
[2] Sookmyung Womens Univ, Res Inst Nat Sci, Seoul 04310, South Korea
[3] State Univ New York, Dept Appl Math & Stat, Incheon 21985, South Korea
[4] Sookmyung Womens Univ, Dept Math, Seoul 04310, South Korea
[5] East China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R China
关键词
Laplacian eigenvalues; Independence number; BIPARTITE GRAPHS;
D O I
10.1016/j.amc.2023.127943
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a graph G , let alpha(G) be the independence number of G , let L(G) be the Laplacian matrix of G , and let mGI be the number of eigenvalues of L(G) in the interval I. Ahanjideh, Akbari, Fakharan and Trevisan proved that alpha(G) <= mG[0, n - alpha(G)] if G is an n-vertex connected graph. Choi, Moon and Park characterized graphs with alpha(G) = mG[0, n - alpha(G)] for alpha(G) = 2 and alpha (G) = n - 2 . In this paper, we give a characterization for alpha (G) = 3 and alpha (G) = n - 3 .(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Classification of graphs by Laplacian eigenvalue distribution and independence number
    Choi, Jinwon
    Moon, Sunyo
    Park, Seungkook
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (18): : 2877 - 2893
  • [2] ON THE DISTRIBUTION OF DISTANCE SIGNLESS LAPLACIAN EIGENVALUES WITH GIVEN INDEPENDENCE AND CHROMATIC NUMBER
    Pirzada, Shariefuddin
    Khan, Saleem
    Belardo, Francesco
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023,
  • [3] Independence number and the normalized Laplacian eigenvalue one
    Das, Arpita
    Panigrahi, Pratima
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023,
  • [4] Laplacian eigenvalue distribution and graph parameters
    Ahanjideh, M.
    Akbari, S.
    Fakharan, M. H.
    Trevisan, V.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 632 : 1 - 14
  • [5] Domination number and Laplacian eigenvalue distribution
    Hedetniemi, Stephen T.
    Jacobs, David P.
    Trevisan, Vilmar
    EUROPEAN JOURNAL OF COMBINATORICS, 2016, 53 : 66 - 71
  • [6] The least eigenvalue of a graph with a given domination number
    Zhu, Bao-Xuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (11) : 2713 - 2718
  • [7] The optimal proper connection number of a graph with given independence number
    Fujita, Shinya
    Park, Boram
    DISCRETE OPTIMIZATION, 2021, 41
  • [8] WEIGHTED MATRIX EIGENVALUE BOUNDS ON THE INDEPENDENCE NUMBER OF A GRAPH
    Elzinga, Randall J.
    Gregory, David A.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2010, 20 : 468 - 489
  • [9] The Laplacian spectral radius for bicyclic graphs with given independence number
    Wang, Guoping
    Guo, Guangquan
    ARS COMBINATORIA, 2017, 130 : 275 - 287
  • [10] The Laplacian spectral radius for unicyclic graphs with given independence number
    Feng, Lihua
    Yu, Guihai
    Ilic, Aleksandar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (05) : 934 - 944