ON THE DISTRIBUTION OF DISTANCE SIGNLESS LAPLACIAN EIGENVALUES WITH GIVEN INDEPENDENCE AND CHROMATIC NUMBER

被引:0
|
作者
Pirzada, Shariefuddin [1 ]
Khan, Saleem [1 ]
Belardo, Francesco [2 ]
机构
[1] Univ Kashmir, Dept Math, Srinagar, Kashmir, India
[2] Univ Naples Federico II, Dept Math & Applicat R Caccioppoli, Naples, Italy
关键词
distance matrix; distance signless Laplacian matrix; spectral radius; independence number; chromatic number; SPECTRUM; MATRIX;
D O I
10.7151/dmgt.2524
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a connected graph G of order n, let D(G) be the distance matrix and Tr(G) be the diagonal matrix of vertex transmissions of G. The dis-tance signless Laplacian (dsL, for short) matrix of G is defined as DQ(G) = Tr(G) +D(G), and the corresponding eigenvalues are the dsL eigenvalues of G. For an interval I, let mDQ(G)I denote the number of dsL eigenvalues of G lying in the interval I. In this paper, for some prescribed interval I, we obtain bounds for mDQ(G)I in terms of the independence number alpha and the chromatic number chi of G. Furthermore, we provide lower bounds of partial differential 1Q(G), the dsL spectral radius, for certain families of graphs in terms of the order n and the independence number alpha, or the chromatic number chi.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] DISTANCE LAPLACIAN EIGENVALUES OF GRAPHS, AND CHROMATIC AND INDEPENDENCE NUMBER
    Pirzada, Shariefuddin
    Khan, Saleem
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2024, 67 (01): : 145 - 159
  • [2] Distance signless Laplacian eigenvalues, diameter, and clique number
    Khan, Saleem
    Pirzada, Shariefuddin
    DISCRETE MATHEMATICS LETTERS, 2022, 10 : 28 - 31
  • [3] Signless Laplacian spectral radii of graphs with given chromatic number
    Yu, Guanglong
    Wu, Yarong
    Shu, Jinlong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (08) : 1813 - 1822
  • [4] Distance Laplacian Eigenvalues and Chromatic Number in Graphs
    Aouchiche, Mustapha
    Hansen, Pierre
    FILOMAT, 2017, 31 (09) : 2545 - 2555
  • [5] Normalized Laplacian eigenvalues with chromatic number and independence number of graphs
    Sun, Shaowei
    Das, Kinkar Ch
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (01): : 63 - 80
  • [6] A Note on the Signless Laplacian and Distance Signless Laplacian Eigenvalues of Graphs
    Fenglei TIAN
    Xiaoming LI
    Jianling ROU
    Journal of Mathematical Research with Applications, 2014, 34 (06) : 647 - 654
  • [7] On distance Laplacian and distance signless Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Aouchiche, Mustapha
    Hansen, Pierre
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (11): : 2307 - 2324
  • [8] Distance signless Laplacian eigenvalues of graphs
    Kinkar Chandra Das
    Huiqiu Lin
    Jiming Guo
    Frontiers of Mathematics in China, 2019, 14 : 693 - 713
  • [9] Distance signless Laplacian eigenvalues of graphs
    Das, Kinkar Chandra
    Lin, Huiqiu
    Guo, Jiming
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (04) : 693 - 713
  • [10] The minimum signless Laplacian spectral radius of graphs with given independence number
    Li, Ruilin
    Shi, Jinsong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (8-10) : 1614 - 1622