Domination number and Laplacian eigenvalue distribution

被引:18
|
作者
Hedetniemi, Stephen T. [1 ]
Jacobs, David P. [1 ]
Trevisan, Vilmar [2 ]
机构
[1] Clemson Univ, Sch Comp, Clemson, SC 29634 USA
[2] Univ Fed Rio Grande do Sul, Inst Matemat, BR-91509900 Porto Alegre, RS, Brazil
关键词
GRAPHS; TREES;
D O I
10.1016/j.ejc.2015.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let m(G)(I) denote the number of Laplacian eigenvalues of a graph G in an interval I. Our main result is that for graphs having domination number gamma, m(G)[0, 1) <= gamma, improving existing bounds in the literature. For many graphs, m(G)[0, 1) = gamma, or m(G)[0, 1) = gamma-1. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:66 / 71
页数:6
相关论文
共 50 条
  • [41] On the Equality of Domination Number and 2-Domination Number
    Ekinci, Gulnaz Boruzanli
    Bujtas, Csilla
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (01) : 383 - 406
  • [42] The least signless Laplacian eigenvalue of non-bipartite graphs with given stability number
    Wen, Qin
    Zhao, Qin
    Liu, Huiqing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 476 : 148 - 158
  • [43] On the minimization of the first eigenvalue of the Laplacian
    Hayouni, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (07): : 551 - 556
  • [44] The ∞-Laplacian first eigenvalue problem
    Belloni, Marino
    FREE BOUNDARY PROBLEMS: THEORY AND APPLICATIONS, 2007, 154 : 85 - 94
  • [45] On the lowest eigenvalue of the Hodge Laplacian
    Chanillo, S
    Treves, F
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1997, 45 (02) : 273 - 287
  • [46] EIGENVALUE BOUNDS FOR THE SIGNLESS LAPLACIAN
    Cvetkovic, Dragos
    Rowlinson, Peter
    Simic, Slobodan
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2007, 81 (95): : 11 - 27
  • [47] The kth Laplacian eigenvalue of a tree
    Guo, Ji-Ming
    JOURNAL OF GRAPH THEORY, 2007, 54 (01) : 51 - 57
  • [48] The smallest eigenvalue of the signless Laplacian
    de Lima, Leonardo Silva
    Oliveira, Carla Silva
    Maia de Abreu, Nair Maria
    Nikiforov, Vladimir
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) : 2570 - 2584
  • [49] An eigenvalue bound for the Laplacian of a graph
    Grossman, JP
    DISCRETE MATHEMATICS, 2005, 300 (1-3) : 225 - 228
  • [50] Eigenvalue bounds of the Kirchhoff Laplacian
    Knill, Oliver
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 701 : 1 - 21