Let m(G)(I) denote the number of Laplacian eigenvalues of a graph G in an interval I. Our main result is that for graphs having domination number gamma, m(G)[0, 1) <= gamma, improving existing bounds in the literature. For many graphs, m(G)[0, 1) = gamma, or m(G)[0, 1) = gamma-1. (C) 2015 Elsevier Ltd. All rights reserved.
机构:
Lingnan Normal Univ, Dept Math, Zhanjiang 524048, Peoples R China
Yancheng Teachers Univ, Dept Math, Yancheng 224002, Jiangsu, Peoples R ChinaLingnan Normal Univ, Dept Math, Zhanjiang 524048, Peoples R China
Yu, Guanglong
Wu, Yarong
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Maritime Univ, SMU Coll Art & Sci, Shanghai, Peoples R ChinaLingnan Normal Univ, Dept Math, Zhanjiang 524048, Peoples R China
Wu, Yarong
Zhai, Mingqing
论文数: 0引用数: 0
h-index: 0
机构:
Chuzhou Univ, Sch Math & Finance, Chuzhou, Peoples R ChinaLingnan Normal Univ, Dept Math, Zhanjiang 524048, Peoples R China
机构:
Tokyo Univ Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1628601, JapanTokyo Univ Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1628601, Japan
Furuya, Michitaka
Ozeki, Kenta
论文数: 0引用数: 0
h-index: 0
机构:
Res Org Informat & Syst, Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, Japan
JST, ERATO, Kawarabayashi Large Graph Project, Kawaguchi, Saitama, JapanTokyo Univ Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1628601, Japan
Ozeki, Kenta
Sasaki, Akinari
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Univ Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1628601, JapanTokyo Univ Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1628601, Japan