Domination number and Laplacian eigenvalue distribution

被引:18
|
作者
Hedetniemi, Stephen T. [1 ]
Jacobs, David P. [1 ]
Trevisan, Vilmar [2 ]
机构
[1] Clemson Univ, Sch Comp, Clemson, SC 29634 USA
[2] Univ Fed Rio Grande do Sul, Inst Matemat, BR-91509900 Porto Alegre, RS, Brazil
关键词
GRAPHS; TREES;
D O I
10.1016/j.ejc.2015.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let m(G)(I) denote the number of Laplacian eigenvalues of a graph G in an interval I. Our main result is that for graphs having domination number gamma, m(G)[0, 1) <= gamma, improving existing bounds in the literature. For many graphs, m(G)[0, 1) = gamma, or m(G)[0, 1) = gamma-1. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:66 / 71
页数:6
相关论文
共 50 条
  • [21] Laplacian eigenvalue distribution and diameter of graphs
    Xu, Leyou
    Zhou, Bo
    DISCRETE MATHEMATICS, 2024, 347 (07)
  • [22] Laplacian eigenvalue distribution and graph parameters
    Ahanjideh, M.
    Akbari, S.
    Fakharan, M. H.
    Trevisan, V.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 632 : 1 - 14
  • [23] The least Q-eigenvalue with fixed domination number
    Yu, Guanglong
    Zhai, Mingqing
    Yan, Chao
    Guo, Shu-guang
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 339 : 477 - 487
  • [24] Minimizing the Laplacian eigenvalues for trees with given domination number
    Feng, Lihua
    Yu, Guihai
    Li, Qiao
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 419 (2-3) : 648 - 655
  • [25] Maximizing the Laplacian Eigenvalues for Graphs with Fixed Domination Number
    Gong, Shi-Cai
    Fan, Yi-Zheng
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 67 - 70
  • [26] Bounds of Laplacian spectrum of graphs based on the domination number
    Lu, M
    Liu, HQ
    Tian, F
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 402 : 390 - 396
  • [27] On the Laplacian spectral radii of trees with given domination number
    He, Chang-Xiang
    Shan, Hai-Ying
    Wu, Bao-Feng
    UTILITAS MATHEMATICA, 2014, 93 : 171 - 177
  • [28] Permanental Bounds of the Laplacian Matrix of Trees with Given Domination Number
    Geng, Xianya
    Hu, Shuna
    Li, Shuchao
    GRAPHS AND COMBINATORICS, 2015, 31 (05) : 1423 - 1436
  • [29] The k-Domination Number and Bounds for the Laplacian Eigenvalues of Graphs
    Li, Rao
    UTILITAS MATHEMATICA, 2009, 79 : 189 - 192
  • [30] Permanental Bounds of the Laplacian Matrix of Trees with Given Domination Number
    Xianya Geng
    Shuna Hu
    Shuchao Li
    Graphs and Combinatorics, 2015, 31 : 1423 - 1436