Sparse bounds for maximal monomial oscillatory Hilbert transforms

被引:3
|
作者
Krause, Ben [1 ]
Lacey, Michael T. [2 ]
机构
[1] Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
maximal truncation; Hilbert transform; sparse bound; SINGULAR-INTEGRALS; POINTWISE ESTIMATE; HARMONIC-ANALYSIS; NILPOTENT GROUPS; OPERATORS;
D O I
10.4064/sm8699-7-2017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each d >= 2, the maximal truncation of the Hilbert transform with a polynomial oscillation, H(*)f(x) = sup (epsilon) vertical bar integral(vertical bar y vertical bar > epsilon) f(x - y) e(2 pi iyd)/y dy vertical bar, satisfies a (1,r) sparse bound for all r > 1. This quickly implies weak-type inequalities for the maximal truncations, which hold for A l weights, but are new even in the case of Lebesgue measure. The unweighted weak-type estimate without maximal truncations but with arbitrary polynomials is due to Chanillo and Christ (1987).
引用
收藏
页码:217 / 229
页数:13
相关论文
共 50 条
  • [1] Uniform sparse bounds for discrete quadratic phase Hilbert transforms
    Kesler, Robert
    Arias, Dario Mena
    ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (01) : 263 - 274
  • [2] Uniform sparse bounds for discrete quadratic phase Hilbert transforms
    Robert Kesler
    Darío Mena Arias
    Analysis and Mathematical Physics, 2019, 9 : 263 - 274
  • [3] Sharp Maximal Function Estimates for Hilbert Transforms Along Monomial Curves in Higher Dimensions
    Wan, Renhui
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2024, 30 (05)
  • [4] Sparse bounds for maximal oscillatory rough singular integral operators
    Choudhary, Surjeet Singh
    Shrivastava, Saurabh
    Shuin, Kalachand
    BULLETIN DES SCIENCES MATHEMATIQUES, 2025, 201
  • [5] Commutators of Hilbert transforms along monomial curves
    Bongers, Tyler
    Guo, Zihua
    Li, Ji
    Wick, Brett D.
    STUDIA MATHEMATICA, 2021, 257 (03) : 295 - 311
  • [6] On Convergence of Oscillatory Ergodic Hilbert Transforms
    Krause, Ben
    Lacey, Michael
    Wierdl, Mate
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2019, 68 (02) : 641 - 662
  • [7] Discrete Hilbert transforms on sparse sequences
    Belov, Yurii
    Mengestie, Tesfa Y.
    Seip, Kristian
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2011, 103 : 73 - 105
  • [8] BILINEAR HILBERT TRANSFORMS ALONG CURVES I: THE MONOMIAL CASE
    Li, Xiaochun
    ANALYSIS & PDE, 2013, 6 (01): : 197 - 220
  • [9] Oscillatory hyper Hilbert transforms along curves
    Jie-cheng Chen
    Da-shan Fan
    Meng Wang
    Applied Mathematics-A Journal of Chinese Universities, 2009, 24 : 336 - 342
  • [10] Efficient evaluation of oscillatory Bessel Hilbert transforms
    Xu, Zhenhua
    Xiang, Shuhuang
    He, Guo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 258 : 57 - 66