Sparse bounds for maximal monomial oscillatory Hilbert transforms

被引:3
|
作者
Krause, Ben [1 ]
Lacey, Michael T. [2 ]
机构
[1] Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
maximal truncation; Hilbert transform; sparse bound; SINGULAR-INTEGRALS; POINTWISE ESTIMATE; HARMONIC-ANALYSIS; NILPOTENT GROUPS; OPERATORS;
D O I
10.4064/sm8699-7-2017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each d >= 2, the maximal truncation of the Hilbert transform with a polynomial oscillation, H(*)f(x) = sup (epsilon) vertical bar integral(vertical bar y vertical bar > epsilon) f(x - y) e(2 pi iyd)/y dy vertical bar, satisfies a (1,r) sparse bound for all r > 1. This quickly implies weak-type inequalities for the maximal truncations, which hold for A l weights, but are new even in the case of Lebesgue measure. The unweighted weak-type estimate without maximal truncations but with arbitrary polynomials is due to Chanillo and Christ (1987).
引用
收藏
页码:217 / 229
页数:13
相关论文
共 50 条
  • [21] Sparse domination of Hilbert transforms along curves
    Cladek, Laura
    Ou, Yumeng
    MATHEMATICAL RESEARCH LETTERS, 2018, 25 (02) : 415 - 436
  • [22] On logarithmic bounds of maximal sparse operators
    Karagulyan, Grigori A.
    Lacey, Michael T.
    MATHEMATISCHE ZEITSCHRIFT, 2020, 294 (3-4) : 1271 - 1281
  • [23] Sparse bounds for spherical maximal functions
    Michael T. Lacey
    Journal d'Analyse Mathématique, 2019, 139 : 613 - 635
  • [24] On logarithmic bounds of maximal sparse operators
    Grigori A. Karagulyan
    Michael T. Lacey
    Mathematische Zeitschrift, 2020, 294 : 1271 - 1281
  • [25] Sparse bounds for spherical maximal functions
    Lacey, Michael T.
    JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (02): : 613 - 635
  • [26] Oscillatory hyper Hilbert transforms along variable curves
    Chen, Jiecheng
    Fan, Dashan
    Wang, Meng
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (04) : 673 - 692
  • [27] Oscillatory hyper Hilbert transforms along variable curves
    Jiecheng Chen
    Dashan Fan
    Meng Wang
    Frontiers of Mathematics in China, 2019, 14 : 673 - 692
  • [28] Oscillatory hyper Hilbert transforms along general curves
    Jiecheng Chen
    Belay Mitiku Damtew
    Xiangrong Zhu
    Frontiers of Mathematics in China, 2017, 12 : 281 - 299
  • [29] Asymptotic expansions and fast computation of oscillatory Hilbert transforms
    Wang, Haiyong
    Zhang, Lun
    Huybrechs, Daan
    NUMERISCHE MATHEMATIK, 2013, 123 (04) : 709 - 743
  • [30] Asymptotic expansions and fast computation of oscillatory Hilbert transforms
    Haiyong Wang
    Lun Zhang
    Daan Huybrechs
    Numerische Mathematik, 2013, 123 : 709 - 743