Sparse bounds for maximal monomial oscillatory Hilbert transforms

被引:3
|
作者
Krause, Ben [1 ]
Lacey, Michael T. [2 ]
机构
[1] Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
maximal truncation; Hilbert transform; sparse bound; SINGULAR-INTEGRALS; POINTWISE ESTIMATE; HARMONIC-ANALYSIS; NILPOTENT GROUPS; OPERATORS;
D O I
10.4064/sm8699-7-2017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each d >= 2, the maximal truncation of the Hilbert transform with a polynomial oscillation, H(*)f(x) = sup (epsilon) vertical bar integral(vertical bar y vertical bar > epsilon) f(x - y) e(2 pi iyd)/y dy vertical bar, satisfies a (1,r) sparse bound for all r > 1. This quickly implies weak-type inequalities for the maximal truncations, which hold for A l weights, but are new even in the case of Lebesgue measure. The unweighted weak-type estimate without maximal truncations but with arbitrary polynomials is due to Chanillo and Christ (1987).
引用
收藏
页码:217 / 229
页数:13
相关论文
共 50 条
  • [41] Schrödinger equation and oscillatory Hilbert transforms of second degree
    K. Oskolkov
    Journal of Fourier Analysis and Applications, 1998, 4 : 341 - 356
  • [42] A maximal function for families of Hilbert transforms along homogeneous curves
    Guo, Shaoming
    Roos, Joris
    Seeger, Andreas
    Yung, Po-Lam
    MATHEMATISCHE ANNALEN, 2020, 377 (1-2) : 69 - 114
  • [43] Hilbert transforms and maximal functions along variable flat curves
    Bennett, JM
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (12) : 4871 - 4892
  • [44] Maximal functions and Hilbert transforms along variable flat curves
    Carbery, A
    Pérez, S
    MATHEMATICAL RESEARCH LETTERS, 1999, 6 (02) : 237 - 249
  • [45] A maximal function for families of Hilbert transforms along homogeneous curves
    Shaoming Guo
    Joris Roos
    Andreas Seeger
    Po-Lam Yung
    Mathematische Annalen, 2020, 377 : 69 - 114
  • [46] LP BOUNDS FOR HILBERT-TRANSFORMS ALONG CONVEX CURVES
    CORDOBA, A
    NAGEL, A
    VANCE, J
    WAINGER, S
    WEINBERG, D
    INVENTIONES MATHEMATICAE, 1986, 83 (01) : 59 - 71
  • [47] Sparse bounds for maximally truncated oscillatory singular integrals
    Krause, Ben
    Lacey, Michael T.
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2020, 20 (02) : 415 - 435
  • [48] Numerical evaluation of Hilbert transforms for oscillatory functions: A convergence accelerator approach
    King, FW
    Smethells, GJ
    Helleloid, GT
    Pelzl, PJ
    COMPUTER PHYSICS COMMUNICATIONS, 2002, 145 (02) : 256 - 266
  • [49] L2 BOUNDS FOR A MAXIMAL DIRECTIONAL HILBERT TRANSFORM
    Kim, Jongchon
    Pramanik, Malabika
    ANALYSIS & PDE, 2022, 15 (03): : 753 - 794
  • [50] L(P) BOUNDS FOR HILBERT-TRANSFORMS ALONG CONVEX SURFACES
    KIM, WJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 193 (01) : 60 - 95