Sparse bounds for maximal monomial oscillatory Hilbert transforms

被引:3
|
作者
Krause, Ben [1 ]
Lacey, Michael T. [2 ]
机构
[1] Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
maximal truncation; Hilbert transform; sparse bound; SINGULAR-INTEGRALS; POINTWISE ESTIMATE; HARMONIC-ANALYSIS; NILPOTENT GROUPS; OPERATORS;
D O I
10.4064/sm8699-7-2017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each d >= 2, the maximal truncation of the Hilbert transform with a polynomial oscillation, H(*)f(x) = sup (epsilon) vertical bar integral(vertical bar y vertical bar > epsilon) f(x - y) e(2 pi iyd)/y dy vertical bar, satisfies a (1,r) sparse bound for all r > 1. This quickly implies weak-type inequalities for the maximal truncations, which hold for A l weights, but are new even in the case of Lebesgue measure. The unweighted weak-type estimate without maximal truncations but with arbitrary polynomials is due to Chanillo and Christ (1987).
引用
收藏
页码:217 / 229
页数:13
相关论文
共 50 条
  • [31] Schrodinger equation and oscillatory Hilbert transforms of second degree
    Oskolkov, K
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1998, 4 (03) : 341 - 356
  • [32] Oscillatory hyper Hilbert transforms along general curves
    Chen, Jiecheng
    Damtew, Belay Mitiku
    Zhu, Xiangrong
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (02) : 281 - 299
  • [33] Asymptotics and numerical approximation of highly oscillatory Hilbert transforms
    Xu, Zhenhua
    Geng, Hongrui
    Fang, Chunhua
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 386
  • [34] Interpolation based formulation of the oscillatory finite Hilbert transforms
    Zaman, Sakhi
    Nawaz, Faiza
    Khan, Suliman
    Zaheer-ud-Din
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 140 : 348 - 355
  • [35] SPARSE BOUNDS FOR DISCRETE SINGULAR RADON TRANSFORMS
    Anderson, Theresa C.
    Hu, Bingyang
    Roos, Joris
    COLLOQUIUM MATHEMATICUM, 2021, 165 (02) : 199 - 217
  • [36] On maximal function of discrete rough truncated Hilbert transforms
    Paluszynski, Maciej
    Zienkiewicz, Jacek
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (06) : 2785 - 2801
  • [37] On maximal function of discrete rough truncated Hilbert transforms
    Maciej Paluszyński
    Jacek Zienkiewicz
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 2785 - 2801
  • [38] SPARSE BOUNDS FOR THE DISCRETE CUBIC HILBERT TRANSFORM
    Culiuc, Amalia
    Kesler, Robert
    Lacey, Michael T.
    ANALYSIS & PDE, 2019, 12 (05): : 1259 - 1272
  • [39] Sparse bounds for oscillatory and random singular integrals
    Lacey, Michael T.
    Spencer, Scott
    NEW YORK JOURNAL OF MATHEMATICS, 2017, 23 : 119 - 131
  • [40] Sparse bounds for the bilinear spherical maximal function
    Borges, Tainara
    Foster, Benjamin
    Ou, Yumeng
    Pipher, Jill
    Zhou, Zirui
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, 107 (04): : 1409 - 1449