Sharp Maximal Function Estimates for Hilbert Transforms Along Monomial Curves in Higher Dimensions

被引:0
|
作者
Wan, Renhui [1 ,2 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
[2] Nanjing Normal Univ, Inst Math Sci, Nanjing 210023, Peoples R China
关键词
Maximal function; Hilbert transform; Monomial curves; Higher dimensions; L-P BOUNDS; SINGULAR-INTEGRALS; AVERAGES; OPERATORS; INEQUALITIES; PROOF;
D O I
10.1007/s00041-024-10109-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any nonempty set U subset of R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U\subset {\mathbb {R}}<^>+$$\end{document}, we consider the maximal operator HU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}<^>U$$\end{document} defined as HUf=supu is an element of U|H(u)f|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}<^>Uf=\sup _{u\in U}|H<^>{(u)} f|$$\end{document}, where H(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{(u)}$$\end{document} represents the Hilbert transform along the monomial curve u gamma(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\gamma (s)$$\end{document}. We focus on the Lp(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p({\mathbb {R}}<^>d)$$\end{document} operator norm of HU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}<^>U$$\end{document} for p is an element of(p degrees(d),infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (p_\circ (d),\infty )$$\end{document}, where p degrees(d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_\circ (d)$$\end{document} is the optimal exponent known for the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p$$\end{document} boundedness of the maximal averaging operator obtained by Ko-Lee-Oh (Invent Math 228:991-1035, 2022, Forum Math Pi 11:Paper No. e4, 33, 2023) and Beltran-Guo-Hickman-Seeger (Am J Math, https://arXiv.org/abs/2102.08272). To achieve this goal, we employ a novel bootstrapping argument to establish a maximal estimate for the Mihlin-H & ouml;rmander-type multiplier, along with utilizing the local smoothing estimate for the averaging operator and its vector-valued extension to obtain crucial decay estimates. Furthermore, our approach offers an alternative means for deriving the upper bound established in Guo-Roos-Seeger-Yung (Math Ann 377:69-114, 2020).
引用
收藏
页数:41
相关论文
共 50 条
  • [1] Commutators of Hilbert transforms along monomial curves
    Bongers, Tyler
    Guo, Zihua
    Li, Ji
    Wick, Brett D.
    STUDIA MATHEMATICA, 2021, 257 (03) : 295 - 311
  • [2] A maximal function for families of Hilbert transforms along homogeneous curves
    Guo, Shaoming
    Roos, Joris
    Seeger, Andreas
    Yung, Po-Lam
    MATHEMATISCHE ANNALEN, 2020, 377 (1-2) : 69 - 114
  • [3] A maximal function for families of Hilbert transforms along homogeneous curves
    Shaoming Guo
    Joris Roos
    Andreas Seeger
    Po-Lam Yung
    Mathematische Annalen, 2020, 377 : 69 - 114
  • [4] BILINEAR HILBERT TRANSFORMS ALONG CURVES I: THE MONOMIAL CASE
    Li, Xiaochun
    ANALYSIS & PDE, 2013, 6 (01): : 197 - 220
  • [5] Estimates for Hilbert transforms along variable general curves
    Yu, Haixia
    He, Kaili
    Li, Dan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (02)
  • [6] Hilbert transforms and maximal functions along variable flat curves
    Bennett, JM
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (12) : 4871 - 4892
  • [7] Maximal functions and Hilbert transforms along variable flat curves
    Carbery, A
    Pérez, S
    MATHEMATICAL RESEARCH LETTERS, 1999, 6 (02) : 237 - 249
  • [8] Sharp L2 estimates of the Schrodinger maximal function in higher dimensions
    Du, Xiumin
    Zhang, Ruixiang
    ANNALS OF MATHEMATICS, 2019, 189 (03) : 837 - 861
  • [9] HILBERT TRANSFORMS ALONG CURVES
    NAGEL, A
    RIVIERE, N
    WAINGER, S
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 80 (01) : 106 - 108
  • [10] Sparse bounds for maximal monomial oscillatory Hilbert transforms
    Krause, Ben
    Lacey, Michael T.
    STUDIA MATHEMATICA, 2018, 242 (03) : 217 - 229