Sharp Maximal Function Estimates for Hilbert Transforms Along Monomial Curves in Higher Dimensions

被引:0
|
作者
Wan, Renhui [1 ,2 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
[2] Nanjing Normal Univ, Inst Math Sci, Nanjing 210023, Peoples R China
关键词
Maximal function; Hilbert transform; Monomial curves; Higher dimensions; L-P BOUNDS; SINGULAR-INTEGRALS; AVERAGES; OPERATORS; INEQUALITIES; PROOF;
D O I
10.1007/s00041-024-10109-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any nonempty set U subset of R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U\subset {\mathbb {R}}<^>+$$\end{document}, we consider the maximal operator HU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}<^>U$$\end{document} defined as HUf=supu is an element of U|H(u)f|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}<^>Uf=\sup _{u\in U}|H<^>{(u)} f|$$\end{document}, where H(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{(u)}$$\end{document} represents the Hilbert transform along the monomial curve u gamma(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\gamma (s)$$\end{document}. We focus on the Lp(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p({\mathbb {R}}<^>d)$$\end{document} operator norm of HU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}<^>U$$\end{document} for p is an element of(p degrees(d),infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (p_\circ (d),\infty )$$\end{document}, where p degrees(d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_\circ (d)$$\end{document} is the optimal exponent known for the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p$$\end{document} boundedness of the maximal averaging operator obtained by Ko-Lee-Oh (Invent Math 228:991-1035, 2022, Forum Math Pi 11:Paper No. e4, 33, 2023) and Beltran-Guo-Hickman-Seeger (Am J Math, https://arXiv.org/abs/2102.08272). To achieve this goal, we employ a novel bootstrapping argument to establish a maximal estimate for the Mihlin-H & ouml;rmander-type multiplier, along with utilizing the local smoothing estimate for the averaging operator and its vector-valued extension to obtain crucial decay estimates. Furthermore, our approach offers an alternative means for deriving the upper bound established in Guo-Roos-Seeger-Yung (Math Ann 377:69-114, 2020).
引用
收藏
页数:41
相关论文
共 50 条