Estimates for Hilbert transforms along variable general curves

被引:1
|
作者
Yu, Haixia [1 ]
He, Kaili [2 ]
Li, Dan [3 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[3] Beijing Technol & Business Univ, Sch Math & Stat, Beijing 100048, Peoples R China
关键词
Hilbert transform; Carleson operator; Littlewood-Paley operator; Variable curve; MAXIMAL FUNCTIONS; OPERATORS; INTEGRALS;
D O I
10.1016/j.jmaa.2020.124394
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of proving L-2(R-2) boundedness and single annulus L-p(R-2) estimate for the Hilbert transform along variable general curve (t, u(1) (x(1))t + u(2) (x(1)) gamma(t)) H-u1,H-u2,H-gamma f(x(1), x(2)):-p.v. integral(infinity)(-infinity) f(x(1)-t, x(2)-u(1)(x(1))t-u(2)(x(1))gamma(t))dt/t ,for all (x(1), x(2))is an element of R-2, where p is an element of (1, infinity), gamma is a general curve on R, u(1) : R -> R and u(2) : R -> R are measurable functions. Moreover, all the bounds are independent of the measurable functions u(1) and u(2). For any given p is an element of (1, infinity), we also obtain the L-p (R) boundedness of the corresponding Carleson operator C(N1,N2,gamma)f (x):=- sup(N1,N2 is an element of R)vertical bar p. v. integral(infinity)(-infinity)e(iN1t+iN2-gamma(t)) f (x - t) dt/t vertical bar, for all x is an element of R. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Oscillatory hyper Hilbert transforms along variable curves
    Jiecheng Chen
    Dashan Fan
    Meng Wang
    [J]. Frontiers of Mathematics in China, 2019, 14 : 673 - 692
  • [2] Oscillatory hyper Hilbert transforms along variable curves
    Chen, Jiecheng
    Fan, Dashan
    Wang, Meng
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (04) : 673 - 692
  • [3] Oscillatory hyper Hilbert transforms along general curves
    Jiecheng Chen
    Belay Mitiku Damtew
    Xiangrong Zhu
    [J]. Frontiers of Mathematics in China, 2017, 12 : 281 - 299
  • [4] Oscillatory hyper Hilbert transforms along general curves
    Chen, Jiecheng
    Damtew, Belay Mitiku
    Zhu, Xiangrong
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (02) : 281 - 299
  • [5] Hilbert transforms and maximal functions along variable flat curves
    Bennett, JM
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (12) : 4871 - 4892
  • [6] Maximal functions and Hilbert transforms along variable flat curves
    Carbery, A
    Pérez, S
    [J]. MATHEMATICAL RESEARCH LETTERS, 1999, 6 (02) : 237 - 249
  • [7] Hilbert transforms along variable planar curves: Lipschitz regularity
    Liu, Naijia
    Yu, Haixia
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (04)
  • [8] HILBERT TRANSFORMS ALONG CURVES
    NAGEL, A
    RIVIERE, N
    WAINGER, S
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 80 (01) : 106 - 108
  • [9] L2-boundedness of Hilbert transforms along variable curves
    Chen Jiecheng
    Zhu Xiangrong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (02) : 515 - 522
  • [10] L2 boundedness of Hilbert transforms along variable flat curves
    Li, Junfeng
    Yu, Haixia
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (3-4) : 1573 - 1591