Parameter estimation of chaotic systems based on extreme value points

被引:0
|
作者
Chen, Zhihuan [1 ]
Yuan, Xiaohui [1 ,2 ]
Wang, Xu [3 ]
Yuan, Yanbin [4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Hydropower & Informat Engn, Wuhan 430074, Hubei, Peoples R China
[2] China Three Gorges Univ, Hubei Prov Key Lab Operat & Control, Cascaded Hydropower Stn, Yichang 443002, Peoples R China
[3] China Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing 100038, Peoples R China
[4] Wuhan Univ Technol, Sch Resource & Environm Engn, Wuhan 430070, Hubei, Peoples R China
来源
PRAMANA-JOURNAL OF PHYSICS | 2019年 / 92卷 / 06期
基金
中国国家自然科学基金;
关键词
Parameter estimation; chaotic system; time series; least squares estimation; noise; TURBINE REGULATING SYSTEM; PROJECTIVE SYNCHRONIZATION; CONTROLLER; DESIGN;
D O I
10.1007/s12043-019-1756-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Parameter estimation and synchronisation of chaotic systems are one of the hottest topics in the field of nonlinear science. In this paper, we addressed how to utilise the obtained experimental time series to estimate multiple parameters in chaotic systems. On the basis of relations of critical points and extreme value points, as well as the least squares estimation, we deduced a novel statistical parameter estimation corollary method to evaluate the unknown parameters in chaotic systems. In order to illustrate the feasibility and effectiveness of the proposed method, three numerical simulation results are presented, where the validity of the proposed method is verified in detail. Furthermore, we also investigated the effects of time-series noise and system disturbances for the proposed method, and the results showed that the proposed method is robust to uncertainties.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Parameter estimation for chaotic systems by particle swarm optimization
    He, Qie
    Wang, Ling
    Liu, Bo
    CHAOS SOLITONS & FRACTALS, 2007, 34 (02) : 654 - 661
  • [22] Optimal parameter estimation of the extreme value distribution based on a Type II censored sample
    Wu, JW
    Li, PL
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2003, 32 (03) : 533 - 554
  • [23] A novel parameter estimation method of alpha-stable distribution based on extreme value
    Li, Li
    Yu, Li
    Zhu, Guangxi
    Pei, Xuebing
    2007 SECOND INTERNATIONAL CONFERENCE IN COMMUNICATIONS AND NETWORKING IN CHINA, VOLS 1 AND 2, 2007, : 204 - 208
  • [24] Chaotic invasive weed optimization algorithm with application to parameter estimation of chaotic systems
    Ahmadi, Mohamadreza
    Mojallali, Hamed
    CHAOS SOLITONS & FRACTALS, 2012, 45 (9-10) : 1108 - 1120
  • [25] Estimation of the third-order parameter in extreme value statistics
    Yuri Goegebeur
    Tertius de Wet
    TEST, 2012, 21 : 330 - 354
  • [26] PARAMETER AND QUANTILE ESTIMATION FOR THE GENERALIZED EXTREME-VALUE DISTRIBUTION
    CASTILLO, E
    HADI, AS
    ENVIRONMETRICS, 1994, 5 (04) : 417 - 432
  • [27] Estimation of the third-order parameter in extreme value statistics
    Goegebeur, Yuri
    de Wet, Tertius
    TEST, 2012, 21 (02) : 330 - 354
  • [29] Parameter estimation of fractional chaotic systems based on stepwise integration and response sensitivity analysis
    Zhang, Tao
    Lu, Zhong-rong
    Liu, Ji-ke
    Liu, Guang
    NONLINEAR DYNAMICS, 2023, 111 (16) : 15127 - 15144
  • [30] Fractional calculus-based firefly algorithm applied to parameter estimation of chaotic systems
    Mousavi, Yashar
    Alfi, Alireza
    CHAOS SOLITONS & FRACTALS, 2018, 114 : 202 - 215