Parameter estimation of fractional chaotic systems based on stepwise integration and response sensitivity analysis

被引:16
|
作者
Zhang, Tao [1 ,2 ]
Lu, Zhong-rong [1 ]
Liu, Ji-ke [3 ]
Liu, Guang [1 ,2 ]
机构
[1] Shenzhen Campus Sun Yat Sen Univ, Sch Aeronaut & Astronaut, Shenzhen, Peoples R China
[2] Shenzhen Key Lab Intelligent Microsatellite Conste, Shenzhen, Peoples R China
[3] Sun Yat Sen Univ, Guangzhou, Peoples R China
关键词
Fractional chaotic system; Parameter estimation; Stepwise integration; Response sensitivity analysis; Trust-region constraint; DYNAMIC-ANALYSIS; IDENTIFICATION; SYNCHRONIZATION; ALGORITHM;
D O I
10.1007/s11071-023-08623-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents a new parameter estimation approach for fractional chaotic systems based on stepwise integration and response sensitivity analysis. This paper mainly consists of three parts. First, a numerical discretization scheme is introduced to obtain the numerical solution of the Grunwald-Letnikov fractional-order equations. Then, we propose a new stepwise objective function based on the single-step integration. Unlike the traditional nonlinear least-squares objective function with multiple local optimal values, the new objective function has a unique minimum value. Next, the nonlinear stepwise objective function is linearized to reduce the solving difficulty, and the trust-region constraint is introduced to raise the convergence performance of the proposed approach. Lastly, the efficiency and viability of the stepwise response sensitivity approach are demonstrated by several numerical tests.
引用
收藏
页码:15127 / 15144
页数:18
相关论文
共 50 条
  • [1] Parameter estimation of fractional chaotic systems based on stepwise integration and response sensitivity analysis
    Tao Zhang
    Zhong-rong Lu
    Ji-ke Liu
    Guang Liu
    Nonlinear Dynamics, 2023, 111 : 15127 - 15144
  • [2] Fractional calculus-based firefly algorithm applied to parameter estimation of chaotic systems
    Mousavi, Yashar
    Alfi, Alireza
    CHAOS SOLITONS & FRACTALS, 2018, 114 : 202 - 215
  • [3] Sensitivity analysis in parameter estimation of physiological systems
    Thomaseth, K
    Cobelli, C
    PROCEEDINGS OF THE 18TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 18, PTS 1-5, 1997, 18 : 1672 - 1673
  • [4] Incremental response sensitivity approach for parameter identification of chaotic and hyperchaotic systems
    Li Wang
    Jike Liu
    Zhong-Rong Lu
    Nonlinear Dynamics, 2017, 89 : 153 - 167
  • [5] Incremental response sensitivity approach for parameter identification of chaotic and hyperchaotic systems
    Wang, Li
    Liu, Jike
    Lu, Zhong-Rong
    NONLINEAR DYNAMICS, 2017, 89 (01) : 153 - 167
  • [6] Parameter estimation for Lorenz chaotic systems based on chaotic ant swarm algorithm
    Li, Li-Xiang
    Peng, Hai-Peng
    Yang, Yi-Xian
    Wang, Xiang-Dong
    Wuli Xuebao/Acta Physica Sinica, 2007, 56 (01): : 51 - 55
  • [7] Parameter estimation for Lorenz chaotic systems based on chaotic ant swarm algorithm
    Li Li-Xiang
    Peng Hai-Peng
    Yang Yi-Xian
    Wang Xiang-Dong
    ACTA PHYSICA SINICA, 2007, 56 (01) : 51 - 55
  • [8] On closure parameter estimation in chaotic systems
    Hakkarainen, J.
    Ilin, A.
    Solonen, A.
    Laine, M.
    Haario, H.
    Tamminen, J.
    Oja, E.
    Jarvinen, H.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2012, 19 (01) : 127 - 143
  • [9] ROBUST PARAMETER ESTIMATION OF CHAOTIC SYSTEMS
    Springer, Sebastian
    Haario, Heikki
    Shemyakin, Vladimir
    Kalachev, Leonid
    Shchepakin, Denis
    INVERSE PROBLEMS AND IMAGING, 2019, 13 (06) : 1189 - 1212
  • [10] PARAMETER ESTIMATION OF STOCHASTIC CHAOTIC SYSTEMS
    Maraia, Ramona
    Springer, Sebastian
    Haario, Heikki
    Hakkarainen, Janne
    Saksman, Eero
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2021, 11 (02) : 49 - 62