Parameter estimation of fractional chaotic systems based on stepwise integration and response sensitivity analysis

被引:16
|
作者
Zhang, Tao [1 ,2 ]
Lu, Zhong-rong [1 ]
Liu, Ji-ke [3 ]
Liu, Guang [1 ,2 ]
机构
[1] Shenzhen Campus Sun Yat Sen Univ, Sch Aeronaut & Astronaut, Shenzhen, Peoples R China
[2] Shenzhen Key Lab Intelligent Microsatellite Conste, Shenzhen, Peoples R China
[3] Sun Yat Sen Univ, Guangzhou, Peoples R China
关键词
Fractional chaotic system; Parameter estimation; Stepwise integration; Response sensitivity analysis; Trust-region constraint; DYNAMIC-ANALYSIS; IDENTIFICATION; SYNCHRONIZATION; ALGORITHM;
D O I
10.1007/s11071-023-08623-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents a new parameter estimation approach for fractional chaotic systems based on stepwise integration and response sensitivity analysis. This paper mainly consists of three parts. First, a numerical discretization scheme is introduced to obtain the numerical solution of the Grunwald-Letnikov fractional-order equations. Then, we propose a new stepwise objective function based on the single-step integration. Unlike the traditional nonlinear least-squares objective function with multiple local optimal values, the new objective function has a unique minimum value. Next, the nonlinear stepwise objective function is linearized to reduce the solving difficulty, and the trust-region constraint is introduced to raise the convergence performance of the proposed approach. Lastly, the efficiency and viability of the stepwise response sensitivity approach are demonstrated by several numerical tests.
引用
收藏
页码:15127 / 15144
页数:18
相关论文
共 50 条
  • [21] Differential evolution algorithm-based parameter estimation for chaotic systems
    Peng, Bo
    Liu, Bo
    Zhang, Fu-Yi
    Wang, Ling
    CHAOS SOLITONS & FRACTALS, 2009, 39 (05) : 2110 - 2118
  • [22] Parameter estimation for chaotic systems based on Chaotic-search Artificial Bee Colony Algorith
    Shan, H. (shfshanhuifeng@163.com), 1600, Binary Information Press, Flat F 8th Floor, Block 3, Tanner Garden, 18 Tanner Road, Hong Kong (11):
  • [23] PARAMETER ESTIMATION OF SYSTEMS WITH DELAYS VIA STRUCTURAL SENSITIVITY ANALYSIS
    Fujarewicz, Krzysztof
    Lakomiec, Krzysztof
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (08): : 2521 - 2533
  • [24] Sensitivity analysis in parameter estimation
    Villalobos, A
    Collado, J
    Wagner, A
    COMPUTATIONAL METHODS IN SURFACE AND GROUND WATER TRANSPORT: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL METHODS IN WATER RESOURCES, VOL 2, 1998, 12 : 337 - 344
  • [25] On parameter estimation of chaotic systems via symbolic time-series analysis
    Piccardi, Carlo
    CHAOS, 2006, 16 (04)
  • [26] Parameter estimation for chaotic systems based on improved boundary chicken swarm optimization
    Chen, Shaolong
    Yan, Renhuan
    INFRARED TECHNOLOGY AND APPLICATIONS, AND ROBOT SENSING AND ADVANCED CONTROL, 2016, 10157
  • [27] Cost function based on hidden Markov models for parameter estimation of chaotic systems
    Shekofteh, Yasser
    Jafari, Sajad
    Rajagopal, Karthikeyan
    SOFT COMPUTING, 2019, 23 (13) : 4765 - 4776
  • [28] Cost function based on hidden Markov models for parameter estimation of chaotic systems
    Yasser Shekofteh
    Sajad Jafari
    Karthikeyan Rajagopal
    Soft Computing, 2019, 23 : 4765 - 4776
  • [29] Parameter identification and synchronization of fractional-order chaotic systems
    Yuan, Li-Guo
    Yang, Qi-Gui
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (01) : 305 - 316
  • [30] Parameter Identification of Fractional-Order Discrete Chaotic Systems
    Peng, Yuexi
    Sun, Kehui
    He, Shaobo
    Peng, Dong
    ENTROPY, 2019, 21 (01):