Parameter estimation for chaotic systems based on improved boundary chicken swarm optimization

被引:2
|
作者
Chen, Shaolong [1 ]
Yan, Renhuan [1 ]
机构
[1] Jinan Univ, Coll Informat Sci & Technol, Guangzhou 510632, Guangdong, Peoples R China
关键词
Chicken swarm optimization; Chaotic system; Parameter estimation; Lorenz system; Cross-border processing; Intelligent optimization algorithm; Particle group optimization; Genetic algorithm; Convergence rate; Convergence precision; ALGORITHM;
D O I
10.1117/12.2246548
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Estimating unknown parameters for chaotic system is a key problem in the field of chaos control and synchronization. Through constructing an appropriate fitness function, parameter estimation of chaotic system could be converted to a multidimensional parameter optimization problem. In this paper, a new method base on improved boundary chicken swarm optimization (IBCSO) algorithm is proposed for solving the problem of parameter estimation in chaotic system. However, to the best of our knowledge, there is no published research work on chicken swarm optimization for parameters estimation of chaotic system. Computer simulation based on Lorenz system and comparisons with chicken swarm optimization, particle swarm optimization and genetic algorithm shows the effectiveness and feasibility of the proposed method.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A Parameter Estimation Method for Nonlinear Systems Based on Improved Boundary Chicken Swarm Optimization
    Chen, Shaolong
    Yang, Renyu
    Yang, Renhuan
    Yang, Liu
    Yang, Xiuzeng
    Xu, Chuangbiao
    Xu, Baoguo
    Zhang, Huatao
    Lu, Yaosheng
    Liu, Weiping
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2016, 2016
  • [2] PARAMETER ESTIMATION FOR NOISY CHAOTIC SYSTEMS BASED ON AN IMPROVED PARTICLE SWARM OPTIMIZATION ALGORITHM
    Wei, Jiamin
    Yu, Yongguang
    Wang, Sha
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2015, 5 (02): : 232 - 242
  • [3] Parameter estimation for chaotic systems by particle swarm optimization
    He, Qie
    Wang, Ling
    Liu, Bo
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 34 (02) : 654 - 661
  • [4] An Improved Biogeography Based Optimization for Parameter Estimation of Chaotic Systems
    Wang, Jianan
    Li, Xiangtao
    Su, Zhongming
    [J]. JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (09) : 2192 - 2200
  • [5] Parameter estimation for chaotic system based on improved adaptive particle swarm optimization
    Wang, Ya
    Yu, Yongguang
    Wen, Guoguang
    Wang, Hu
    [J]. Journal of Information and Computational Science, 2014, 11 (03): : 953 - 962
  • [6] Parameter estimation for fractional-order chaotic systems by improved bird swarm optimization algorithm
    Zhang, Pei
    Yang, Renyu
    Yang, Renhuan
    Ren, Gong
    Yang, Xiuzeng
    Xu, Chuangbiao
    Xu, Baoguo
    Zhang, Huatao
    Cai, Yanning
    Lu, Yaosheng
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2019, 30 (11):
  • [7] Parameter estimation for chaotic system based on particle swarm optimization
    Gao, F
    Tong, HQ
    [J]. ACTA PHYSICA SINICA, 2006, 55 (02) : 577 - 582
  • [8] Parameter estimation for chaotic systems using improved bird swarm algorithm
    Xu, Chuangbiao
    Yang, Renhuan
    [J]. MODERN PHYSICS LETTERS B, 2017, 31 (36):
  • [9] Parameter estimation for chaotic systems with a Drift Particle Swarm Optimization method
    Sun, Jun
    Zhao, Ji
    Wu, Xiaojun
    Fang, Wei
    Cai, Yujie
    Xu, Wenbo
    [J]. PHYSICS LETTERS A, 2010, 374 (28) : 2816 - 2822
  • [10] Parameter estimation for Lorenz chaotic systems based on chaotic ant swarm algorithm
    Li Li-Xiang
    Peng Hai-Peng
    Yang Yi-Xian
    Wang Xiang-Dong
    [J]. ACTA PHYSICA SINICA, 2007, 56 (01) : 51 - 55