Parameter estimation of chaotic systems based on extreme value points

被引:0
|
作者
Chen, Zhihuan [1 ]
Yuan, Xiaohui [1 ,2 ]
Wang, Xu [3 ]
Yuan, Yanbin [4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Hydropower & Informat Engn, Wuhan 430074, Hubei, Peoples R China
[2] China Three Gorges Univ, Hubei Prov Key Lab Operat & Control, Cascaded Hydropower Stn, Yichang 443002, Peoples R China
[3] China Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing 100038, Peoples R China
[4] Wuhan Univ Technol, Sch Resource & Environm Engn, Wuhan 430070, Hubei, Peoples R China
来源
PRAMANA-JOURNAL OF PHYSICS | 2019年 / 92卷 / 06期
基金
中国国家自然科学基金;
关键词
Parameter estimation; chaotic system; time series; least squares estimation; noise; TURBINE REGULATING SYSTEM; PROJECTIVE SYNCHRONIZATION; CONTROLLER; DESIGN;
D O I
10.1007/s12043-019-1756-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Parameter estimation and synchronisation of chaotic systems are one of the hottest topics in the field of nonlinear science. In this paper, we addressed how to utilise the obtained experimental time series to estimate multiple parameters in chaotic systems. On the basis of relations of critical points and extreme value points, as well as the least squares estimation, we deduced a novel statistical parameter estimation corollary method to evaluate the unknown parameters in chaotic systems. In order to illustrate the feasibility and effectiveness of the proposed method, three numerical simulation results are presented, where the validity of the proposed method is verified in detail. Furthermore, we also investigated the effects of time-series noise and system disturbances for the proposed method, and the results showed that the proposed method is robust to uncertainties.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Parameter estimation of fractional chaotic systems based on stepwise integration and response sensitivity analysis
    Tao Zhang
    Zhong-rong Lu
    Ji-ke Liu
    Guang Liu
    Nonlinear Dynamics, 2023, 111 : 15127 - 15144
  • [32] PARAMETER ESTIMATION FOR NOISY CHAOTIC SYSTEMS BASED ON AN IMPROVED PARTICLE SWARM OPTIMIZATION ALGORITHM
    Wei, Jiamin
    Yu, Yongguang
    Wang, Sha
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2015, 5 (02): : 232 - 242
  • [33] An effective hybrid biogeography-based optimization algorithm for parameter estimation of chaotic systems
    Wang, Ling
    Xu, Ye
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (12) : 15103 - 15109
  • [34] A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems
    Shekofteh, Yasser
    Jafari, Sajad
    Sprott, Julien Clinton
    Golpayegani, S. Mohammad Reza Hashemi
    Almasganj, Farshad
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (02) : 469 - 481
  • [35] A chaotic secure communication method based on chaos systems partial series parameter estimation
    Liu Le-Zhu
    Zhang Ji-Qian
    Xu Gui-Xia
    Liang Li-Si
    Wang Mao-Sheng
    ACTA PHYSICA SINICA, 2014, 63 (01)
  • [36] Simple parameter estimation technique for three-parameter generalized extreme value distribution
    Bhunya, P. K.
    Jain, S. K.
    Ojha, C. S. P.
    Agarwal, A.
    JOURNAL OF HYDROLOGIC ENGINEERING, 2007, 12 (06) : 682 - 689
  • [37] Parameter estimation of chaotic systems by an oppositional seeker optimization algorithm
    Jian Lin
    Chang Chen
    Nonlinear Dynamics, 2014, 76 : 509 - 517
  • [38] Parameter and state estimation of experimental chaotic systems using synchronization
    Quinn, John C.
    Bryant, Paul H.
    Creveling, Daniel R.
    Klein, Sallee R.
    Abarbanel, Henry D. I.
    PHYSICAL REVIEW E, 2009, 80 (01)
  • [39] An Improved Return Maps Method for Parameter Estimation of Chaotic Systems
    Peng, Yuexi
    Sun, Kehui
    He, Shaobo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (04):
  • [40] Parameter estimation of dynamical systems via a chaotic ant swarm
    Peng, Haipeng
    Li, Lixiang
    Yang, Yixian
    Liu, Fei
    PHYSICAL REVIEW E, 2010, 81 (01):