Paper-based microfluidic devices for electrochemical immunofiltration analysis of human chorionic gonadotropin

被引:87
|
作者
Cao, Liangli [1 ]
Fang, Cheng [2 ]
Zeng, Ruosheng [2 ]
Zhao, Xiongjie [1 ]
Jiang, Yuren [1 ]
Chen, Zhencheng [2 ]
机构
[1] Cent S Univ, Coll Chem & Chem Engn, Dept Pharm Engn, Changsha 410083, Hunan, Peoples R China
[2] Guilin Univ Elect Technol, Sch Life & Environm Sci, Guilin 541014, Peoples R China
来源
基金
国家科技攻关计划; 中国国家自然科学基金;
关键词
Paper-based microfluidic devices; Photolithography; Electrochemical immunofiltration; Point-of-care testing; Human chorionic gonadotropin; SIGNAL AMPLIFICATION; BIOSENSOR; IMMUNOSENSOR; ELECTRODE; IMMUNODEVICE; POINT; NANOPARTICLE; PLATFORM; ASSAY; IMMUNOASSAYS;
D O I
10.1016/j.bios.2017.02.002
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
An electrochemical immunofiltration analysis was introduced into microfluidic paper-based analytical devices (mu PADs) for the first time, which was based on photolithography and screen-printing technology. The hydrophilic test zones of the aldehyde-functionalized screen-printed electrodes (SPEs) were biofunctionalized with capture antibodies (Ab(1)). A sensitive immune detection method was developed by using primary signal antibody functionalized gold nanoparticles (GNPs/Ab(2)) and alkaline phosphatase conjugated secondary antibody (ALP-IgG). Differential pulse voltammetry (DPV) was performed to detect the electrochemical response. The microfluidic paper-based electrochemical immunosensor (mu-PEI) was optimized and characterized for the detection of human chorionic gonadotropin (HCG), a model analyte, in a linear range from 1.0 mIU mL(-1) to 100.0 IU mL(-1) with a detection limit of 0.36 mIU mL(-1). Additionally, the proposed mu-PEI was used to test HCG in real human serum and obtained satisfactory results. The disposable, efficient, sensitive and low-cost mu-PEI has exhibited great potential for the development of point-of-care testing (POCT) devices that can be applicated in healthcare monitoring.
引用
收藏
页码:87 / 94
页数:8
相关论文
共 50 条
  • [31] Paper-based microfluidic devices for the detection of nitrite in water
    Huang, Rongjie
    An-Phong Le
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [32] The potential and application of microfluidic paper-based separation devices
    Carvalhal, Rafaela Fernanda
    Carrilho, Emanuel
    Kubota, Lauro Tatsuo
    BIOANALYSIS, 2010, 2 (10) : 1663 - 1665
  • [33] Fully Enclosed Microfluidic Paper-Based Analytical Devices
    Schilling, Kevin M.
    Lepore, Anna L.
    Kurian, Jason A.
    Martinez, Andres W.
    ANALYTICAL CHEMISTRY, 2012, 84 (03) : 1579 - 1585
  • [34] Measurement of the hematocrit using paper-based microfluidic devices
    Berry, Samuel B.
    Fernandes, Syrena C.
    Rajaratnam, Anjali
    DeChiara, Nicholas S.
    Mace, Charles R.
    LAB ON A CHIP, 2016, 16 (19) : 3689 - 3694
  • [35] Microfluidic Paper-based Analytical Devices in Clinical Applications
    Tingting Han
    Yuhang Jin
    Chunyang Geng
    Aziz ur Rehman Aziz
    Yang Zhang
    Sha Deng
    Haijun Ren
    Bo Liu
    Chromatographia, 2020, 83 : 693 - 701
  • [36] Fabrication of Miniaturized Paper-Based Microfluidic Devices (MicroPADs)
    E. Brandon Strong
    Spencer A. Schultz
    Andres W. Martinez
    Nathaniel W. Martinez
    Scientific Reports, 9
  • [37] Microfluidic paper-based analytical devices for cancer diagnosis
    Shalaby, Ahmed A.
    Tsao, Chia-Wen
    Ishida, Akihiko
    Maeki, Masatoshi
    Tokeshi, Manabu
    SENSORS AND ACTUATORS B-CHEMICAL, 2023, 379
  • [38] Recent advances on paper-based microfluidic devices for bioanalysis
    Silva-Neto, Habdias A.
    Arantes, Iana V. S.
    Ferreira, Andre L.
    do Nascimento, Guida H. M.
    Meloni, Gabriel N.
    de Araujo, William R.
    Paixa, Thiago R. L. C.
    Coltro, Wendell K. T.
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2023, 158
  • [39] Microfluidic Paper-based Analytical Devices in Clinical Applications
    Han, Tingting
    Jin, Yuhang
    Geng, Chunyang
    Aziz, Aziz Ur Rehman
    Zhang, Yang
    Deng, Sha
    Ren, Haijun
    Liu, Bo
    CHROMATOGRAPHIA, 2020, 83 (06) : 693 - 701
  • [40] Programmable Paper-Based Microfluidic Devices for Biomarker Detections
    Soum, Veasna
    Park, Sooyong
    Brilian, Albertus Ivan
    Kwon, Oh-Sun
    Shin, Kwanwoo
    MICROMACHINES, 2019, 10 (08)