Microfluidic Paper-based Analytical Devices in Clinical Applications

被引:8
|
作者
Han, Tingting [1 ]
Jin, Yuhang [1 ]
Geng, Chunyang [1 ]
Aziz, Aziz Ur Rehman [1 ]
Zhang, Yang [2 ]
Deng, Sha [1 ]
Ren, Haijun [3 ]
Liu, Bo [1 ]
机构
[1] Dalian Univ Technol, Sch Biomed Engn, Liaoning IC&BMES Key Lab, Dalian 116024, Liaoning, Peoples R China
[2] Ctr Dis Control & Prevent, Beijing 101100, Peoples R China
[3] Dalian Friendship Hosp, Dalian 116024, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
mu PADs; Detection methods; Clinical applications; LOW-COST; ISOTHERMAL AMPLIFICATION; SIGNAL AMPLIFICATION; RAPID-DETERMINATION; DISEASE BIOMARKERS; CANCER-CELLS; MU-PADS; CHIP; CARE; BIOSENSOR;
D O I
10.1007/s10337-020-03892-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Microfluidic paper-based analytical devices (mu PADs) take the paper as a base material and integrate nanoscale microchannel on it for multiple detections. Its unique properties like low cost, portability, simple operation, and easy to save make it better than the traditional microfluidic chips. While designed originally for point-of-care medical diagnostics, mu PADs have attracted the attention of many researchers in the fields of environmental monitoring, water quality, and food safety. The novelty of this paper is to present a detailed overview of mu PADs for clinical applications. Firstly, a brief introduction to production methods, characteristics, and applications of these methods have been given. Secondly, the basic implementation, working principles, and corresponding performance of detection methods of clinical devices have been discussed, which enable the mu PADs to detect biomarkers, human cells, bacteria, and viruses in a short time. Lastly, the factors that limit mu PADs commercial applications, and their future research directions have also been briefly summarized.
引用
收藏
页码:693 / 701
页数:9
相关论文
共 50 条
  • [1] Microfluidic Paper-based Analytical Devices in Clinical Applications
    Tingting Han
    Yuhang Jin
    Chunyang Geng
    Aziz ur Rehman Aziz
    Yang Zhang
    Sha Deng
    Haijun Ren
    Bo Liu
    [J]. Chromatographia, 2020, 83 : 693 - 701
  • [2] Detection methods and applications of microfluidic paper-based analytical devices
    Fu, Lung-Ming
    Wang, Yao-Nan
    [J]. TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2018, 107 : 196 - 211
  • [3] Microfluidic Paper-Based Analytical Devices: From Design to Applications
    Noviana, Eka
    Ozer, Tugba
    Carrell, Cody S.
    Link, Jeremy S.
    McMahon, Catherine
    Jang, Ilhoon
    Henry, Charles S.
    [J]. CHEMICAL REVIEWS, 2021, 121 (19) : 11835 - 11885
  • [4] Fabrication, Flow Control, and Applications of Microfluidic Paper-Based Analytical Devices
    Lim, Hosub
    Jafry, Ali Turab
    Lee, Jinkee
    [J]. MOLECULES, 2019, 24 (16):
  • [5] Microfluidic paper-based analytical devices: from POCKET to paper-based ELISA
    Martinez, Andres W.
    [J]. BIOANALYSIS, 2011, 3 (23) : 2589 - 2592
  • [6] Microfluidic paper-based devices for bioanalytical applications
    Santhiago, Murilo
    Nery, Emilia W.
    Santos, Glauco P.
    Kubota, Lauro T.
    [J]. BIOANALYSIS, 2014, 6 (01) : 89 - 106
  • [7] Microfluidic Paper-Based Analytical Devices for the Determination of Food Contaminants: Developments and Applications
    Wang, Minglu
    Cui, Jiarui
    Wang, Ying
    Yang, Liu
    Jia, Zhenzhen
    Gao, Chuanjie
    Zhang, Hongyan
    [J]. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2022, 70 (27) : 8188 - 8206
  • [8] USB powered microfluidic paper-based analytical devices
    Schaumburg, Federico
    Kler, Pablo A.
    Carrell, Cody S.
    Berli, Claudio L. A.
    Henry, Charles S.
    [J]. ELECTROPHORESIS, 2020, 41 (7-8) : 562 - 569
  • [9] Advances in Microfluidic Paper-Based Analytical Devices (μPADs): Design, Fabrication, and Applications
    Chen, Jian Lin
    Njoku, Demian Ifeanyi
    Tang, Cui
    Gao, Yaru
    Chen, Jiayu
    Peng, Yung-Kang
    Sun, Hongyan
    Mao, Guozhu
    Pan, Min
    Tam, Nora Fung-Yee
    [J]. SMALL METHODS, 2024,
  • [10] Fully Enclosed Microfluidic Paper-Based Analytical Devices
    Schilling, Kevin M.
    Lepore, Anna L.
    Kurian, Jason A.
    Martinez, Andres W.
    [J]. ANALYTICAL CHEMISTRY, 2012, 84 (03) : 1579 - 1585