Paper-based microfluidic devices for electrochemical immunofiltration analysis of human chorionic gonadotropin

被引:87
|
作者
Cao, Liangli [1 ]
Fang, Cheng [2 ]
Zeng, Ruosheng [2 ]
Zhao, Xiongjie [1 ]
Jiang, Yuren [1 ]
Chen, Zhencheng [2 ]
机构
[1] Cent S Univ, Coll Chem & Chem Engn, Dept Pharm Engn, Changsha 410083, Hunan, Peoples R China
[2] Guilin Univ Elect Technol, Sch Life & Environm Sci, Guilin 541014, Peoples R China
来源
基金
国家科技攻关计划; 中国国家自然科学基金;
关键词
Paper-based microfluidic devices; Photolithography; Electrochemical immunofiltration; Point-of-care testing; Human chorionic gonadotropin; SIGNAL AMPLIFICATION; BIOSENSOR; IMMUNOSENSOR; ELECTRODE; IMMUNODEVICE; POINT; NANOPARTICLE; PLATFORM; ASSAY; IMMUNOASSAYS;
D O I
10.1016/j.bios.2017.02.002
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
An electrochemical immunofiltration analysis was introduced into microfluidic paper-based analytical devices (mu PADs) for the first time, which was based on photolithography and screen-printing technology. The hydrophilic test zones of the aldehyde-functionalized screen-printed electrodes (SPEs) were biofunctionalized with capture antibodies (Ab(1)). A sensitive immune detection method was developed by using primary signal antibody functionalized gold nanoparticles (GNPs/Ab(2)) and alkaline phosphatase conjugated secondary antibody (ALP-IgG). Differential pulse voltammetry (DPV) was performed to detect the electrochemical response. The microfluidic paper-based electrochemical immunosensor (mu-PEI) was optimized and characterized for the detection of human chorionic gonadotropin (HCG), a model analyte, in a linear range from 1.0 mIU mL(-1) to 100.0 IU mL(-1) with a detection limit of 0.36 mIU mL(-1). Additionally, the proposed mu-PEI was used to test HCG in real human serum and obtained satisfactory results. The disposable, efficient, sensitive and low-cost mu-PEI has exhibited great potential for the development of point-of-care testing (POCT) devices that can be applicated in healthcare monitoring.
引用
收藏
页码:87 / 94
页数:8
相关论文
共 50 条
  • [21] Advances in Microfluidic Paper-Based Analytical Devices for Food and Water Analysis
    Alamo Busa, Lori Shayne
    Mohammadi, Saeed
    Maeki, Masatoshi
    Ishida, Akihiko
    Tani, Hirofumi
    Tokeshi, Manabu
    MICROMACHINES, 2016, 7 (05):
  • [22] Microfluidic Paper-based Analytical Devices for On-site Environmental Analysis
    Umeda, Mika I.
    Kaneta, Takashi
    BUNSEKI KAGAKU, 2024, 73 (09) : 433 - 439
  • [23] Fabrication for paper-based microfluidic analytical devices and saliva analysis application
    Hao, Zeji
    Chen, Hongyu
    Shi, Xin
    Tan, Wei
    Zhu, Guorui
    MICROFLUIDICS AND NANOFLUIDICS, 2021, 25 (10)
  • [24] Electrochemical paper-based microfluidic device for high throughput multiplexed analysis
    Fava, Elson Luiz
    Silva, Tiago Almeida
    do Prado, Thiago Martimiano
    de Moraes, Fernando Cruz
    Faria, Ronaldo Censi
    Fatibello-Filho, Orlando
    TALANTA, 2019, 203 : 280 - 286
  • [25] Carbon tape as a convenient electrode material for electrochemical paper-based microfluidic devices (ePADs)
    Gomez, Federico J. V.
    Reed, Paige A.
    Gonzalez Casamachin, Diego
    Rivera de la Rosa, Javier
    Chumanov, George
    Fernanda Silva, Maria
    Garcia, Carlos D.
    ANALYTICAL METHODS, 2018, 10 (33) : 4020 - 4027
  • [26] Electrochemical detection of glucose from whole blood using paper-based microfluidic devices
    Noiphung, Julaluk
    Songjaroen, Temsiri
    Dungchai, Wijitar
    Henry, Charles S.
    Chailapakul, Orawon
    Laiwattanapaisal, Wanida
    ANALYTICA CHIMICA ACTA, 2013, 788 : 39 - 45
  • [27] A portable sample concentrator on paper-based microfluidic devices
    Hung, Li-Hsuan
    Wang, Hsiang-Li
    Yang, Ruey-Jen
    MICROFLUIDICS AND NANOFLUIDICS, 2016, 20 (05)
  • [28] A portable sample concentrator on paper-based microfluidic devices
    Li-Hsuan Hung
    Hsiang-Li Wang
    Ruey-Jen Yang
    Microfluidics and Nanofluidics, 2016, 20
  • [29] USB powered microfluidic paper-based analytical devices
    Schaumburg, Federico
    Kler, Pablo A.
    Carrell, Cody S.
    Berli, Claudio L. A.
    Henry, Charles S.
    ELECTROPHORESIS, 2020, 41 (7-8) : 562 - 569
  • [30] Analysis on paper-based microfluidic systems
    Whitesides, George M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240