Triangle-free intersection graphs of line segments with large chromatic number

被引:54
|
作者
Pawlik, Arkadiusz [1 ]
Kozik, Jakub [1 ]
Krawczyk, Tomasz [1 ]
Lason, Michal [1 ,2 ]
Micek, Piotr [1 ]
Trotter, William T. [3 ]
Walczak, Bartosz [1 ,4 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Theoret Comp Sci Dept, Krakow, Poland
[2] Polish Acad Sci, Inst Math, Warsaw, Poland
[3] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[4] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
关键词
Intersection graph; Line segments; Triangle-free; Chromatic number; ARCWISE CONNECTED SETS; PLANE; INTERVALS; RELATIVES;
D O I
10.1016/j.jctb.2013.11.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the 1970s Erdos asked whether the chromatic number of intersection graphs of line segments in the plane is bounded by a function of their clique number. We show the answer is no. Specifically, for each positive integer k we construct a triangle-free family of line segments in the plane with chromatic number greater than k. Our construction disproves a conjecture of Scott that graphs excluding induced subdivisions of any fixed graph have chromatic number bounded by a function of their clique number. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:6 / 10
页数:5
相关论文
共 50 条
  • [1] Triangle-Free Geometric Intersection Graphs with Large Chromatic Number
    Arkadiusz Pawlik
    Jakub Kozik
    Tomasz Krawczyk
    Michał Lasoń
    Piotr Micek
    William T. Trotter
    Bartosz Walczak
    Discrete & Computational Geometry, 2013, 50 : 714 - 726
  • [2] Triangle-Free Geometric Intersection Graphs with Large Chromatic Number
    Pawlik, Arkadiusz
    Kozik, Jakub
    Krawczyk, Tomasz
    Lason, Michal
    Micek, Piotr
    Trotter, William T.
    Walczak, Bartosz
    DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (03) : 714 - 726
  • [3] Cycles in triangle-free graphs of large chromatic number
    Alexandr Kostochka
    Benny Sudakov
    Jacques Verstraëte
    Combinatorica, 2017, 37 : 481 - 494
  • [4] Cycles in triangle-free graphs of large chromatic number
    Kostochka, Alexandr
    Sudakov, Benny
    Verstraete, Jacques
    COMBINATORICA, 2017, 37 (03) : 481 - 494
  • [5] Triangle-free planar graphs as segments intersection graphs
    de Castro, N
    Cobos, FJ
    Dana, JC
    Márquez, A
    Noy, M
    GRAPH DRAWING, 1999, 1731 : 341 - 350
  • [6] On the chromatic number of triangle-free graphs of large minimum degree
    Thomassen, C
    COMBINATORICA, 2002, 22 (04) : 591 - 596
  • [7] Triangle-free graphs with large chromatic number and no induced wheel
    Davies, James
    JOURNAL OF GRAPH THEORY, 2023, 103 (01) : 112 - 118
  • [8] On the Chromatic Number of Triangle-Free Graphs of Large Minimum Degree
    Carsten Thomassen
    Combinatorica, 2002, 22 : 591 - 596
  • [9] LINE-CHROMATIC NUMBER OF TRIANGLE-FREE GRAPHS - PRELIMINARY REPORT
    KRONK, HVE
    RADLOWSK.M
    TRANEN, B
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (02): : A291 - A291
  • [10] Triangle-free graphs with large chromatic numbers
    Nilli, A
    DISCRETE MATHEMATICS, 2000, 211 (1-3) : 261 - 262