Triangle-Free Geometric Intersection Graphs with Large Chromatic Number

被引:0
|
作者
Arkadiusz Pawlik
Jakub Kozik
Tomasz Krawczyk
Michał Lasoń
Piotr Micek
William T. Trotter
Bartosz Walczak
机构
[1] Jagiellonian University,Theoretical Computer Science Department, Faculty of Mathematics and Computer Science
[2] Institute of Mathematics of the Polish Academy of Sciences,School of Mathematics
[3] Georgia Institute of Technology,undefined
[4] École Polytechnique Fédérale de Lausanne,undefined
来源
关键词
Intersection graph; Triangle-free; Chromatic number; On-line; 05C62; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
Several classical constructions illustrate the fact that the chromatic number of a graph may be arbitrarily large compared to its clique number. However, until very recently no such construction was known for intersection graphs of geometric objects in the plane. We provide a general construction that for any arc-connected compact set X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R }^2$$\end{document} that is not an axis-aligned rectangle and for any positive integer k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} produces a family F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F }$$\end{document} of sets, each obtained by an independent horizontal and vertical scaling and translation of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document}, such that no three sets in F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F }$$\end{document} pairwise intersect and χ(F)>k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi (\mathcal{F })>k$$\end{document}. This provides a negative answer to a question of Gyárfás and Lehel for L-shapes. With extra conditions we also show how to construct a triangle-free family of homothetic (uniformly scaled) copies of a set with arbitrarily large chromatic number. This applies to many common shapes, like circles, square boundaries or equilateral L-shapes. Additionally, we reveal a surprising connection between coloring geometric objects in the plane and on-line coloring of intervals on the line.
引用
收藏
页码:714 / 726
页数:12
相关论文
共 50 条
  • [1] Triangle-Free Geometric Intersection Graphs with Large Chromatic Number
    Pawlik, Arkadiusz
    Kozik, Jakub
    Krawczyk, Tomasz
    Lason, Michal
    Micek, Piotr
    Trotter, William T.
    Walczak, Bartosz
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (03) : 714 - 726
  • [2] Triangle-free intersection graphs of line segments with large chromatic number
    Pawlik, Arkadiusz
    Kozik, Jakub
    Krawczyk, Tomasz
    Lason, Michal
    Micek, Piotr
    Trotter, William T.
    Walczak, Bartosz
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2014, 105 : 6 - 10
  • [3] Cycles in triangle-free graphs of large chromatic number
    Alexandr Kostochka
    Benny Sudakov
    Jacques Verstraëte
    [J]. Combinatorica, 2017, 37 : 481 - 494
  • [4] Cycles in triangle-free graphs of large chromatic number
    Kostochka, Alexandr
    Sudakov, Benny
    Verstraete, Jacques
    [J]. COMBINATORICA, 2017, 37 (03) : 481 - 494
  • [5] Triangle-Free Geometric Intersection Graphs with No Large Independent Sets
    Bartosz Walczak
    [J]. Discrete & Computational Geometry, 2015, 53 : 221 - 225
  • [6] On the chromatic number of triangle-free graphs of large minimum degree
    Thomassen, C
    [J]. COMBINATORICA, 2002, 22 (04) : 591 - 596
  • [7] Triangle-Free Geometric Intersection Graphs with No Large Independent Sets
    Walczak, Bartosz
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 53 (01) : 221 - 225
  • [8] Triangle-free graphs with large chromatic number and no induced wheel
    Davies, James
    [J]. JOURNAL OF GRAPH THEORY, 2023, 103 (01) : 112 - 118
  • [9] On the Chromatic Number of Triangle-Free Graphs of Large Minimum Degree
    Carsten Thomassen
    [J]. Combinatorica, 2002, 22 : 591 - 596
  • [10] Triangle-free graphs with large chromatic numbers
    Nilli, A
    [J]. DISCRETE MATHEMATICS, 2000, 211 (1-3) : 261 - 262