Triangle-free graphs with large chromatic numbers

被引:11
|
作者
Nilli, A [1 ]
机构
[1] Tel Aviv Univ, Dept Math, IL-69978 Ramat Aviv, Tel Aviv, Israel
关键词
chromatic number; triangle-free graphs;
D O I
10.1016/S0012-365X(99)00109-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that there are two positive constants c(1),c(2) such that the maximum possible chromatic number of a triangle-free graph with m > 1 edges is at most c(1)m(1/3)/(log m)(2/3) and at least c(2)m(1/3) /(log m)(2/3). This is deduced from results of Ajtai, Komlos, Szemeredi, Kim and Johansson, and settles a problem of Erdos. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:261 / 262
页数:2
相关论文
共 50 条
  • [1] Cycles in triangle-free graphs of large chromatic number
    Alexandr Kostochka
    Benny Sudakov
    Jacques Verstraëte
    [J]. Combinatorica, 2017, 37 : 481 - 494
  • [2] Cycles in triangle-free graphs of large chromatic number
    Kostochka, Alexandr
    Sudakov, Benny
    Verstraete, Jacques
    [J]. COMBINATORICA, 2017, 37 (03) : 481 - 494
  • [3] Triangle-Free Geometric Intersection Graphs with Large Chromatic Number
    Arkadiusz Pawlik
    Jakub Kozik
    Tomasz Krawczyk
    Michał Lasoń
    Piotr Micek
    William T. Trotter
    Bartosz Walczak
    [J]. Discrete & Computational Geometry, 2013, 50 : 714 - 726
  • [4] On the chromatic number of triangle-free graphs of large minimum degree
    Thomassen, C
    [J]. COMBINATORICA, 2002, 22 (04) : 591 - 596
  • [5] Triangle-free graphs with large chromatic number and no induced wheel
    Davies, James
    [J]. JOURNAL OF GRAPH THEORY, 2023, 103 (01) : 112 - 118
  • [6] On the Chromatic Number of Triangle-Free Graphs of Large Minimum Degree
    Carsten Thomassen
    [J]. Combinatorica, 2002, 22 : 591 - 596
  • [7] Triangle-Free Geometric Intersection Graphs with Large Chromatic Number
    Pawlik, Arkadiusz
    Kozik, Jakub
    Krawczyk, Tomasz
    Lason, Michal
    Micek, Piotr
    Trotter, William T.
    Walczak, Bartosz
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (03) : 714 - 726
  • [8] On the chromatic index of join graphs and triangle-free graphs with large maximum degree
    Zorzi, A.
    Zatesko, L. M.
    [J]. DISCRETE APPLIED MATHEMATICS, 2018, 245 : 183 - 189
  • [9] TRIANGLE-FREE 4-CHROMATIC GRAPHS
    JIN, GP
    [J]. DISCRETE MATHEMATICS, 1995, 145 (1-3) : 151 - 170
  • [10] Triangle-free intersection graphs of line segments with large chromatic number
    Pawlik, Arkadiusz
    Kozik, Jakub
    Krawczyk, Tomasz
    Lason, Michal
    Micek, Piotr
    Trotter, William T.
    Walczak, Bartosz
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2014, 105 : 6 - 10