Triangle-free graphs with large chromatic number and no induced wheel

被引:1
|
作者
Davies, James [1 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
关键词
Burling graphs; chromatic number; induced subgraph; wheels; INTERSECTION GRAPHS;
D O I
10.1002/jgt.22906
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A wheel is a graph consisting of an induced cycle of length at least four and a single additional vertex with at least three neighbours on the cycle. We prove that no Burling graph contains an induced wheel. Burling graphs are triangle-free and have arbitrarily large chromatic number, so this answers a question of Trotignon and disproves a conjecture of Scott and Seymour.
引用
收藏
页码:112 / 118
页数:7
相关论文
共 50 条
  • [1] Cycles in triangle-free graphs of large chromatic number
    Alexandr Kostochka
    Benny Sudakov
    Jacques Verstraëte
    [J]. Combinatorica, 2017, 37 : 481 - 494
  • [2] Cycles in triangle-free graphs of large chromatic number
    Kostochka, Alexandr
    Sudakov, Benny
    Verstraete, Jacques
    [J]. COMBINATORICA, 2017, 37 (03) : 481 - 494
  • [3] Triangle-Free Geometric Intersection Graphs with Large Chromatic Number
    Arkadiusz Pawlik
    Jakub Kozik
    Tomasz Krawczyk
    Michał Lasoń
    Piotr Micek
    William T. Trotter
    Bartosz Walczak
    [J]. Discrete & Computational Geometry, 2013, 50 : 714 - 726
  • [4] On the chromatic number of triangle-free graphs of large minimum degree
    Thomassen, C
    [J]. COMBINATORICA, 2002, 22 (04) : 591 - 596
  • [5] On the Chromatic Number of Triangle-Free Graphs of Large Minimum Degree
    Carsten Thomassen
    [J]. Combinatorica, 2002, 22 : 591 - 596
  • [6] Triangle-Free Geometric Intersection Graphs with Large Chromatic Number
    Pawlik, Arkadiusz
    Kozik, Jakub
    Krawczyk, Tomasz
    Lason, Michal
    Micek, Piotr
    Trotter, William T.
    Walczak, Bartosz
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (03) : 714 - 726
  • [7] A counterexample to a conjecture about triangle-free induced subgraphs of graphs with large chromatic number
    Carbonero, Alvaro
    Hompe, Patrick
    Moore, Benjamin
    Spirkl, Sophie
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2023, 158 : 63 - 69
  • [8] Triangle-free intersection graphs of line segments with large chromatic number
    Pawlik, Arkadiusz
    Kozik, Jakub
    Krawczyk, Tomasz
    Lason, Michal
    Micek, Piotr
    Trotter, William T.
    Walczak, Bartosz
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2014, 105 : 6 - 10
  • [9] Triangle-free graphs with large chromatic numbers
    Nilli, A
    [J]. DISCRETE MATHEMATICS, 2000, 211 (1-3) : 261 - 262
  • [10] The fractional chromatic number of triangle-free graphs with Δ ≤ 3
    Lu, Linyuan
    Peng, Xing
    [J]. DISCRETE MATHEMATICS, 2012, 312 (24) : 3502 - 3516