Triangle-free intersection graphs of line segments with large chromatic number

被引:54
|
作者
Pawlik, Arkadiusz [1 ]
Kozik, Jakub [1 ]
Krawczyk, Tomasz [1 ]
Lason, Michal [1 ,2 ]
Micek, Piotr [1 ]
Trotter, William T. [3 ]
Walczak, Bartosz [1 ,4 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Theoret Comp Sci Dept, Krakow, Poland
[2] Polish Acad Sci, Inst Math, Warsaw, Poland
[3] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[4] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
关键词
Intersection graph; Line segments; Triangle-free; Chromatic number; ARCWISE CONNECTED SETS; PLANE; INTERVALS; RELATIVES;
D O I
10.1016/j.jctb.2013.11.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the 1970s Erdos asked whether the chromatic number of intersection graphs of line segments in the plane is bounded by a function of their clique number. We show the answer is no. Specifically, for each positive integer k we construct a triangle-free family of line segments in the plane with chromatic number greater than k. Our construction disproves a conjecture of Scott that graphs excluding induced subdivisions of any fixed graph have chromatic number bounded by a function of their clique number. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:6 / 10
页数:5
相关论文
共 50 条
  • [31] The number of the maximal triangle-free graphs
    Balogh, Jozsef
    Petrickova, Sarka
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 : 1003 - 1006
  • [32] On line graphs of subcubic triangle-free graphs
    Munaro, Andrea
    DISCRETE MATHEMATICS, 2017, 340 (06) : 1210 - 1226
  • [33] On minimal triangle-free graphs with prescribed k-defective chromatic number
    Achuthan, Nirmala
    Achuthan, N. R.
    Simanihuruk, M.
    DISCRETE MATHEMATICS, 2011, 311 (13) : 1119 - 1127
  • [34] ON THE HULL NUMBER OF TRIANGLE-FREE GRAPHS
    Dourado, Mitre C.
    Protti, Fabio
    Rautenbach, Dieter
    Szwarcfiter, Jayme L.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 23 (04) : 2163 - 2172
  • [35] MINIMAL 5-CHROMATIC TRIANGLE-FREE GRAPHS
    AVIS, D
    JOURNAL OF GRAPH THEORY, 1979, 3 (04) : 397 - 400
  • [36] On minimal triangle-free 6-chromatic graphs
    Goedgebeur, Jan
    JOURNAL OF GRAPH THEORY, 2020, 93 (01) : 34 - 48
  • [37] Colouring triangle-free intersection graphs of boxes on the plane
    Kostochka, AV
    Perepelitsa, IG
    DISCRETE MATHEMATICS, 2000, 220 (1-3) : 243 - 249
  • [38] Subcubic triangle-free graphs have fractional chromatic number at most 14/5
    Dvorak, Z.
    Sereni, J. -S.
    Volec, J.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2014, 89 : 641 - 662
  • [39] On the chromatic number of simple triangle-free triple systems
    Frieze, Alan
    Mubayi, Dhruv
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [40] A triangle-free circle graph with chromatic number 5
    Ageev, AA
    DISCRETE MATHEMATICS, 1996, 152 (1-3) : 295 - 298