On the chromatic number of simple triangle-free triple systems

被引:0
|
作者
Frieze, Alan [1 ]
Mubayi, Dhruv [2 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2008年 / 15卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A hypergraph is simple if every two edges share at most one vertex. It is triangle free if in addition every three pairwise intersecting edges have a vertex in common. We prove that there is an absolute constant c such that the chromatic number of a simple triangle-free triple system with maximum degreee Delta is at most c root Delta/log Delta. This extends a result of Johansson about graphs, and is sharp apart from the constant c.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Cycles in triangle-free graphs of large chromatic number
    Kostochka, Alexandr
    Sudakov, Benny
    Verstraete, Jacques
    [J]. COMBINATORICA, 2017, 37 (03) : 481 - 494
  • [2] Triangle-free subgraphs with large fractional chromatic number
    Mohar, Bojan
    Wu, Hehui
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2022, 31 (01): : 136 - 143
  • [3] Cycles in triangle-free graphs of large chromatic number
    Alexandr Kostochka
    Benny Sudakov
    Jacques Verstraëte
    [J]. Combinatorica, 2017, 37 : 481 - 494
  • [4] Circular chromatic number of triangle-free hexagonal graphs
    Sparl, Petra
    Zerovnik, Janez
    [J]. SOR'07: PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON OPERATIONAL RESEARCH IN SLOVENIA, 2007, : 75 - 79
  • [5] The fractional chromatic number of triangle-free graphs with Δ ≤ 3
    Lu, Linyuan
    Peng, Xing
    [J]. DISCRETE MATHEMATICS, 2012, 312 (24) : 3502 - 3516
  • [6] A triangle-free circle graph with chromatic number 5
    Ageev, AA
    [J]. DISCRETE MATHEMATICS, 1996, 152 (1-3) : 295 - 298
  • [7] The fractional chromatic number of triangle-free subcubic graphs
    Ferguson, David G.
    Kaiser, Tomas
    Kral, Daniel
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2014, 35 : 184 - 220
  • [8] STAR CHROMATIC NUMBER OF TRIANGLE-FREE PLANAR GRAPHS
    GAO, GG
    [J]. APPLIED MATHEMATICS LETTERS, 1994, 7 (01) : 75 - 78
  • [9] Triangle-Free Geometric Intersection Graphs with Large Chromatic Number
    Arkadiusz Pawlik
    Jakub Kozik
    Tomasz Krawczyk
    Michał Lasoń
    Piotr Micek
    William T. Trotter
    Bartosz Walczak
    [J]. Discrete & Computational Geometry, 2013, 50 : 714 - 726
  • [10] On the chromatic number of triangle-free graphs of large minimum degree
    Thomassen, C
    [J]. COMBINATORICA, 2002, 22 (04) : 591 - 596