Noncommutative Cauchy Integral Formula

被引:7
|
作者
Ghiloni, Riccardo [1 ]
Perotti, Alessandro [1 ]
Recupero, Vincenzo [2 ]
机构
[1] Univ Trento, Dipartimento Matemat, Via Sommar 14, I-38123 Trento, Italy
[2] Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
Cauchy integral formula; Functions of a hypercomplex variable; Quaternions; Octonions; Clifford algebras; REGULAR FUNCTIONS; FUNCTIONAL-CALCULUS; KERNEL; SERIES;
D O I
10.1007/s11785-016-0543-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to provide and prove the most general Cauchy integral formula for slice regular functions and for C-1 functions on a real alternative *-algebra. Slice regular functions represent a generalization of the classical concept of holomorphic function of a complex variable in the noncommutative and nonassociative settings. As an application, we obtain two kinds of local series expansion for slice regular functions.
引用
收藏
页码:289 / 306
页数:18
相关论文
共 50 条
  • [21] PLEMELJ FORMULA OF CAUCHY TYPE INTEGRAL ON STEIN MANIFOLDS
    陈吕萍
    林良裕
    Acta Mathematica Scientia, 2005, (04) : 647 - 657
  • [22] A New Cauchy Integral Formula in the Complex Clifford Analysis
    Zunfeng Li
    Heju Yang
    Yuying Qiao
    Advances in Applied Clifford Algebras, 2018, 28
  • [23] Holomorphy tests based on Cauchy's integral formula
    Cascante, C
    Pascuas, D
    PACIFIC JOURNAL OF MATHEMATICS, 1995, 171 (01) : 89 - 116
  • [24] Cauchy's integral formula in domains of arbitrary connectivity
    Samokhin, MV
    SBORNIK MATHEMATICS, 2000, 191 (7-8) : 1215 - 1231
  • [25] Fast multipole method using the cauchy integral formula
    Mechanical Engineering Department, Institute for Computational and Mathematical Engineering, Stanford University, CA, United States
    不详
    Lect. Notes Comput. Sci. Eng., (127-144):
  • [26] A Cauchy Integral Formula for Inframonogenic Functions in Clifford Analysis
    Moreno Garcia, Arsenio
    Moreno Garcia, Tania
    Abreu Blaya, Ricardo
    Bory Reyes, Juan
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 1147 - 1159
  • [27] A New Cauchy Integral Formula in the Complex Clifford Analysis
    Li, Zunfeng
    Yang, Heju
    Qiao, Yuying
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2018, 28 (04)
  • [28] Cauchy integral formula for generalized analytic functions in hydrodynamics
    Zabarankin, Michael
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2148): : 3745 - 3764
  • [29] A Cauchy Integral Formula for Infrapolymonogenic Functions in Clifford Analysis
    Ricardo Abreu Blaya
    Juan Bory Reyes
    Arsenio Moreno García
    Tania Moreno García
    Advances in Applied Clifford Algebras, 2020, 30
  • [30] Integral formula for the characteristic Cauchy problem on a curved background
    Joudioux, Jeremie
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 95 (02): : 151 - 193