A Cauchy Integral Formula for Infrapolymonogenic Functions in Clifford Analysis

被引:0
|
作者
Ricardo Abreu Blaya
Juan Bory Reyes
Arsenio Moreno García
Tania Moreno García
机构
[1] Universidad Autónoma de Guerrero,Facultad de Matemáticas
[2] SEPI-ESIME-ZAC,Facultad de Informática y Matemática
[3] Instituto Politécnico Nacional,undefined
[4] Universidad de Holguín,undefined
来源
关键词
Clifford analysis; Cauchy integral formula; Dirac operator; 30G35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we derive a Cauchy integral representation formula for the solutions of the iterated sandwich equation ∂x̲2k-1f∂x̲=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _{{\underline{x}}}^{2k-1}f\partial _{{\underline{x}}}=0$$\end{document}, where k is a positive integer and ∂x̲\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _{{\underline{x}}}$$\end{document} stands for the Dirac operator in the Euclidean space Rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}^m$$\end{document}. We call these solutions (2k-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2k-1)$$\end{document}-infrapolymonogenic functions (or simply infrapolymonogenic if no confusion can arise). For k=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1$$\end{document} the derived formula becomes the Cauchy integral representation formula recently obtained in Moreno-García et al. (Adv Appl Clifford Algebras 27(2):1147–1159, 2017) for inframonogenic functions.
引用
收藏
相关论文
共 50 条
  • [1] A Cauchy Integral Formula for Infrapolymonogenic Functions in Clifford Analysis
    Blaya, Ricardo Abreu
    Reyes, Juan Bory
    Garcia, Arsenio Moreno
    Garcia, Tania Moreno
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2020, 30 (02)
  • [2] A Cauchy Integral Formula for Inframonogenic Functions in Clifford Analysis
    Moreno Garcia, Arsenio
    Moreno Garcia, Tania
    Abreu Blaya, Ricardo
    Bory Reyes, Juan
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 1147 - 1159
  • [3] A Cauchy Integral Formula for Inframonogenic Functions in Clifford Analysis
    Arsenio Moreno García
    Tania Moreno García
    Ricardo Abreu Blaya
    Juan Bory Reyes
    Advances in Applied Clifford Algebras, 2017, 27 : 1147 - 1159
  • [4] Cauchy integral formula and Plemelj formula of bihypermonogenic functions in real Clifford analysis
    Bian, Xiaoli
    Eriksson, Sirkka-Liisa
    Li, Junxia
    Qiao, Yuying
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2009, 54 (10) : 957 - 976
  • [5] A New Cauchy Integral Formula in the Complex Clifford Analysis
    Li, Zunfeng
    Yang, Heju
    Qiao, Yuying
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2018, 28 (04)
  • [6] A New Cauchy Integral Formula in the Complex Clifford Analysis
    Zunfeng Li
    Heju Yang
    Yuying Qiao
    Advances in Applied Clifford Algebras, 2018, 28
  • [7] The Cauchy Integral Formula in Hermitian, Quaternionic and osp(4|2) Clifford Analysis
    Brackx, F.
    De Schepper, H.
    Lavicka, R.
    Soucek, V.
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2020, 20 (3-4) : 431 - 464
  • [9] Integral Formula of Isotonic Functions over Unbounded Domain in Clifford Analysis
    Ku Min
    Advances in Applied Clifford Algebras, 2010, 20 : 57 - 70
  • [10] Integral Formula of Isotonic Functions over Unbounded Domain in Clifford Analysis
    Min, Ku
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2010, 20 (01) : 57 - 70