A Cauchy Integral Formula for Infrapolymonogenic Functions in Clifford Analysis

被引:0
|
作者
Ricardo Abreu Blaya
Juan Bory Reyes
Arsenio Moreno García
Tania Moreno García
机构
[1] Universidad Autónoma de Guerrero,Facultad de Matemáticas
[2] SEPI-ESIME-ZAC,Facultad de Informática y Matemática
[3] Instituto Politécnico Nacional,undefined
[4] Universidad de Holguín,undefined
来源
Advances in Applied Clifford Algebras | 2020年 / 30卷
关键词
Clifford analysis; Cauchy integral formula; Dirac operator; 30G35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we derive a Cauchy integral representation formula for the solutions of the iterated sandwich equation ∂x̲2k-1f∂x̲=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _{{\underline{x}}}^{2k-1}f\partial _{{\underline{x}}}=0$$\end{document}, where k is a positive integer and ∂x̲\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _{{\underline{x}}}$$\end{document} stands for the Dirac operator in the Euclidean space Rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}^m$$\end{document}. We call these solutions (2k-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2k-1)$$\end{document}-infrapolymonogenic functions (or simply infrapolymonogenic if no confusion can arise). For k=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1$$\end{document} the derived formula becomes the Cauchy integral representation formula recently obtained in Moreno-García et al. (Adv Appl Clifford Algebras 27(2):1147–1159, 2017) for inframonogenic functions.
引用
收藏
相关论文
共 50 条
  • [41] Noncommutative Cauchy Integral Formula
    Riccardo Ghiloni
    Alessandro Perotti
    Vincenzo Recupero
    Complex Analysis and Operator Theory, 2017, 11 : 289 - 306
  • [42] The Cauchy integral formula for (p, q)-monogenic functions with α-weight in superspace
    Gao, Long
    Du, Xiaojing
    Liang, Xiaotong
    Xie, Yonghong
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2025, 70 (02) : 263 - 277
  • [43] CAUCHY INTEGRAL FORMULA FOR BI-POLYANALYTIC FUNCTIONS ON THE QUARTER PLANE
    Dem, Himani
    Chaudhary, Arun
    Kumar, Ravindra
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 20 (09): : 1985 - 1994
  • [44] On Cauchy and Martinelli-Bochner integral formulae in Hermitean Clifford analysis
    Brackx, F.
    De Knock, B.
    De Schepper, H.
    Sommen, F.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2009, 40 (03): : 395 - 416
  • [45] H-B Theorems of Cauchy Integral Operators in Clifford Analysis
    Wang, Yufeng
    Zhang, Zhongxiang
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2025, 35 (01)
  • [46] On Cauchy and Martinelli-Bochner integral formulae in Hermitean Clifford analysis
    F. Brackx
    B. De Knock
    H. De Schepper
    F. Sommen
    Bulletin of the Brazilian Mathematical Society, New Series, 2009, 40 : 395 - 416
  • [47] Inverse problems for the Cauchy integral formula and the Cauchy integral derivative formulas
    I. I. Bavrin
    Doklady Mathematics, 2008, 78 : 679 - 680
  • [48] Inverse Problems for the Cauchy Integral Formula and the Cauchy Integral Derivative Formulas
    Bavrin, I. I.
    DOKLADY MATHEMATICS, 2008, 78 (02) : 679 - 680
  • [49] An integral transform generating elementary functions in Clifford analysis
    Laville, G
    Ramadanoff, I
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (06) : 637 - 654
  • [50] A New Cauchy Type Integral Formula for Quaternionic k-hypermonogenic Functions
    Eriksson, Sirkka-Liisa
    Orelma, Heikki
    MODERN TRENDS IN HYPERCOMPLEX ANALYSIS, 2016, : 175 - 189