A Cauchy Integral Formula for Infrapolymonogenic Functions in Clifford Analysis

被引:0
|
作者
Ricardo Abreu Blaya
Juan Bory Reyes
Arsenio Moreno García
Tania Moreno García
机构
[1] Universidad Autónoma de Guerrero,Facultad de Matemáticas
[2] SEPI-ESIME-ZAC,Facultad de Informática y Matemática
[3] Instituto Politécnico Nacional,undefined
[4] Universidad de Holguín,undefined
来源
Advances in Applied Clifford Algebras | 2020年 / 30卷
关键词
Clifford analysis; Cauchy integral formula; Dirac operator; 30G35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we derive a Cauchy integral representation formula for the solutions of the iterated sandwich equation ∂x̲2k-1f∂x̲=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _{{\underline{x}}}^{2k-1}f\partial _{{\underline{x}}}=0$$\end{document}, where k is a positive integer and ∂x̲\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _{{\underline{x}}}$$\end{document} stands for the Dirac operator in the Euclidean space Rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}^m$$\end{document}. We call these solutions (2k-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2k-1)$$\end{document}-infrapolymonogenic functions (or simply infrapolymonogenic if no confusion can arise). For k=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1$$\end{document} the derived formula becomes the Cauchy integral representation formula recently obtained in Moreno-García et al. (Adv Appl Clifford Algebras 27(2):1147–1159, 2017) for inframonogenic functions.
引用
收藏
相关论文
共 50 条
  • [21] A Local Cauchy Integral Formula for Slice-Regular Functions
    Perotti, Alessandro
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2024, 24 (01) : 185 - 203
  • [22] A Cauchy integral formula for(p, q)-monogenic functions with α-weight
    GAO Long
    DU Xiao-jing
    LIU Yue
    XIE Yong-hong
    Applied Mathematics:A Journal of Chinese Universities, 2024, 39 (03) : 545 - 553
  • [23] Cauchy-Like Integral Formula for Functions of a Hyperbolic Variable
    Catoni, Francesco
    Zampetti, Paolo
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2012, 22 (01) : 23 - 37
  • [24] A Cauchy integral formula for (p, q)-monogenic functions with α-weight
    Gao, Long
    Du, Xiao-jing
    Liu, Yue
    Xie, Yong-hong
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2024, 39 (03) : 545 - 553
  • [25] QUANTUM ALGORITHM FOR MATRIX FUNCTIONS BY CAUCHY'S INTEGRAL FORMULA
    Takahira, Souichi
    Ohashi, Asuka
    Sogabe, Tomohiro
    Usuda, Tsuyoshi Sasaki
    QUANTUM INFORMATION & COMPUTATION, 2020, 20 (1-2) : 14 - 36
  • [27] Cauchy-Like Integral Formula for Functions of a Hyperbolic Variable
    Francesco Catoni
    Paolo Zampetti
    Advances in Applied Clifford Algebras, 2012, 22 : 23 - 37
  • [28] A Local Cauchy Integral Formula for Slice-Regular Functions
    Alessandro Perotti
    Computational Methods and Function Theory, 2024, 24 : 185 - 203
  • [29] Quantum algorithm for matrix functions by cauchy’s integral formula
    Takahira, Souichi
    Ohashi, Asuka
    Sogabe, Tomohiro
    Usuda, Tsuyoshi Sasaki
    1600, Rinton Press Inc. (20): : 1 - 2
  • [30] Harmonic multivector fields and the Cauchy integral decomposition in Clifford analysis
    Abreu-Blaya, R
    Bory-Reyes, J
    Delanghe, R
    Sommen, F
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2004, 11 (01) : 95 - 110