A New Cauchy Integral Formula in the Complex Clifford Analysis

被引:0
|
作者
Zunfeng Li
Heju Yang
Yuying Qiao
机构
[1] Hebei Normal University,College of Mathematics and Information Science
[2] Hebei University of Science and Technology,College of Science
来源
关键词
Complex Clifford algebra; Complex regular function; The Stoke’s formula; Cauchy–Pompeiu formula; Cauchy integral formula; 30E20; 30E25; 45E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we construct an analogue of Bochner–Martinelli kernel based on theory of functions of several complex variables in complex Clifford analysis, which has generalized complex differential forms with Clifford basis vectors. Using these complex differential forms, we obtain the Stoke’s formula of complex Clifford functions which are defined on a domain Ω⊂Cn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset C^{n+1}$$\end{document} and take values in a complex Clifford algebra Cl0,n(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cl_{0,n}(C)$$\end{document}. Then, we give a Stoke’s formula which has a classical form and an analogue of Cauchy–Pompeiu formula which is represented by Bochner–Martinelli kernel, and establish an analogue of Cauchy integral formula in complex Clifford analysis. It is possible to promote these results to complex manifold’s corresponding results in the Clifford analysis using the representation by generalized complex differential forms.
引用
收藏
相关论文
共 50 条
  • [1] A New Cauchy Integral Formula in the Complex Clifford Analysis
    Li, Zunfeng
    Yang, Heju
    Qiao, Yuying
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2018, 28 (04)
  • [2] A Cauchy Integral Formula for Inframonogenic Functions in Clifford Analysis
    Moreno Garcia, Arsenio
    Moreno Garcia, Tania
    Abreu Blaya, Ricardo
    Bory Reyes, Juan
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 1147 - 1159
  • [3] A Cauchy Integral Formula for Infrapolymonogenic Functions in Clifford Analysis
    Ricardo Abreu Blaya
    Juan Bory Reyes
    Arsenio Moreno García
    Tania Moreno García
    Advances in Applied Clifford Algebras, 2020, 30
  • [4] A Cauchy Integral Formula for Inframonogenic Functions in Clifford Analysis
    Arsenio Moreno García
    Tania Moreno García
    Ricardo Abreu Blaya
    Juan Bory Reyes
    Advances in Applied Clifford Algebras, 2017, 27 : 1147 - 1159
  • [5] A Cauchy Integral Formula for Infrapolymonogenic Functions in Clifford Analysis
    Blaya, Ricardo Abreu
    Reyes, Juan Bory
    Garcia, Arsenio Moreno
    Garcia, Tania Moreno
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2020, 30 (02)
  • [6] Cauchy integral formula and Plemelj formula of bihypermonogenic functions in real Clifford analysis
    Bian, Xiaoli
    Eriksson, Sirkka-Liisa
    Li, Junxia
    Qiao, Yuying
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2009, 54 (10) : 957 - 976
  • [7] Cauchy Integral Formula on the Distinguished Boundary with Values in Complex Universal Clifford Algebra
    Xu, Na
    Li, Zunfeng
    Yang, Heju
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2021, 31 (05)
  • [8] Cauchy Integral Formula on the Distinguished Boundary with Values in Complex Universal Clifford Algebra
    Na Xu
    Zunfeng Li
    Heju Yang
    Advances in Applied Clifford Algebras, 2021, 31
  • [9] The Cauchy Integral Formula in Hermitian, Quaternionic and osp(4|2) Clifford Analysis
    Brackx, F.
    De Schepper, H.
    Lavicka, R.
    Soucek, V.
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2020, 20 (3-4) : 431 - 464