A New Cauchy Integral Formula in the Complex Clifford Analysis

被引:0
|
作者
Zunfeng Li
Heju Yang
Yuying Qiao
机构
[1] Hebei Normal University,College of Mathematics and Information Science
[2] Hebei University of Science and Technology,College of Science
来源
关键词
Complex Clifford algebra; Complex regular function; The Stoke’s formula; Cauchy–Pompeiu formula; Cauchy integral formula; 30E20; 30E25; 45E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we construct an analogue of Bochner–Martinelli kernel based on theory of functions of several complex variables in complex Clifford analysis, which has generalized complex differential forms with Clifford basis vectors. Using these complex differential forms, we obtain the Stoke’s formula of complex Clifford functions which are defined on a domain Ω⊂Cn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset C^{n+1}$$\end{document} and take values in a complex Clifford algebra Cl0,n(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cl_{0,n}(C)$$\end{document}. Then, we give a Stoke’s formula which has a classical form and an analogue of Cauchy–Pompeiu formula which is represented by Bochner–Martinelli kernel, and establish an analogue of Cauchy integral formula in complex Clifford analysis. It is possible to promote these results to complex manifold’s corresponding results in the Clifford analysis using the representation by generalized complex differential forms.
引用
收藏
相关论文
共 50 条