On Generalization of Martinelli-Bochner Integral Formula Using Clifford Analysis

被引:20
|
作者
Ku Min [1 ]
Du Jinyuan [2 ]
Wang Daoshun [1 ]
机构
[1] Tsinghua Univ, Dept Comp Sci & Technol, Tsinghua Natl Lab Informat Sci & Technol TNlist, Beijing 100084, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
关键词
Clifford analysis; isotonic functions; unbounded domain; Martinelli-Bochner formula;
D O I
10.1007/s00006-009-0172-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we mainly study the so-called isotonic Dirac system over the unbounded domains in Euclidean space of even dimension. In such systems different Dirac operators appear from the left and from the right on the functions considered. We attain the integral representation of isotonic functions satisfying the specific growth condition over the unbounded domains, and show that the classical Martinelli-Bochner integral representation over the unbounded domains for the holomorphic functions of several complex variables and for Hermitean monogenic functions both satisfying the specific growth condition may be derived from it.
引用
收藏
页码:351 / 366
页数:16
相关论文
共 50 条
  • [1] On Generalization of Martinelli-Bochner Integral Formula Using Clifford Analysis
    Ku Min
    Du Jinyuan
    Wang Daoshun
    Advances in Applied Clifford Algebras, 2010, 20 : 351 - 366
  • [2] Martinelli-Bochner formula using Clifford analysis
    Frank Sommen
    Dixan Peña Peña
    Archiv der Mathematik, 2007, 88 : 358 - 363
  • [3] Martinelli-Bochner formula using Clifford analysis
    Sommen, Frank
    Pena, Dixan Pena
    ARCHIV DER MATHEMATIK, 2007, 88 (04) : 358 - 363
  • [4] On Cauchy and Martinelli-Bochner integral formulae in Hermitean Clifford analysis
    Brackx, F.
    De Knock, B.
    De Schepper, H.
    Sommen, F.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2009, 40 (03): : 395 - 416
  • [5] On Cauchy and Martinelli-Bochner integral formulae in Hermitean Clifford analysis
    F. Brackx
    B. De Knock
    H. De Schepper
    F. Sommen
    Bulletin of the Brazilian Mathematical Society, New Series, 2009, 40 : 395 - 416
  • [6] MARTINELLI-BOCHNER SINGULAR INTEGRAL
    PRENOV, BB
    TARKHANOV, NN
    SIBERIAN MATHEMATICAL JOURNAL, 1992, 33 (02) : 355 - 359
  • [7] MARTINELLI-BOCHNER INTEGRAL FORMULA AND PHRAGMEN-LINDELOF PRINCIPLE
    IARMUKHAMEDOV, S
    DOKLADY AKADEMII NAUK SSSR, 1978, 243 (06): : 1414 - 1417
  • [8] A Martinelli-Bochner formula on fractal domains
    Ricardo Abreu-Blaya
    Juan Bory-Reyes
    Archiv der Mathematik, 2009, 92 : 335 - 343
  • [9] A Martinelli-Bochner formula on fractal domains
    Abreu-Blaya, Ricardo
    Bory-Reyes, Juan
    ARCHIV DER MATHEMATIK, 2009, 92 (04) : 335 - 343
  • [10] A LOCAL MARTINELLI-BOCHNER FORMULA ON HYPERSURFACES
    FISCHER, B
    LEITERER, J
    MATHEMATISCHE ZEITSCHRIFT, 1993, 214 (04) : 659 - 681