On Generalization of Martinelli-Bochner Integral Formula Using Clifford Analysis

被引:20
|
作者
Ku Min [1 ]
Du Jinyuan [2 ]
Wang Daoshun [1 ]
机构
[1] Tsinghua Univ, Dept Comp Sci & Technol, Tsinghua Natl Lab Informat Sci & Technol TNlist, Beijing 100084, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
关键词
Clifford analysis; isotonic functions; unbounded domain; Martinelli-Bochner formula;
D O I
10.1007/s00006-009-0172-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we mainly study the so-called isotonic Dirac system over the unbounded domains in Euclidean space of even dimension. In such systems different Dirac operators appear from the left and from the right on the functions considered. We attain the integral representation of isotonic functions satisfying the specific growth condition over the unbounded domains, and show that the classical Martinelli-Bochner integral representation over the unbounded domains for the holomorphic functions of several complex variables and for Hermitean monogenic functions both satisfying the specific growth condition may be derived from it.
引用
收藏
页码:351 / 366
页数:16
相关论文
共 50 条
  • [41] On the Notion of the Bochner-Martinelli Integral for Domains with Rectifiable Boundary
    Abreu-Blaya, Ricardo
    Bory-Reyes, Juan
    Shapiro, Michael
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2007, 1 (02) : 143 - 168
  • [42] Bochner-Martinelli formula for k-Cauchy-Fueter operator
    Wang, Haiyan
    Ren, Guangbin
    JOURNAL OF GEOMETRY AND PHYSICS, 2014, 84 : 43 - 54
  • [43] A Cauchy Integral Formula for Inframonogenic Functions in Clifford Analysis
    Moreno Garcia, Arsenio
    Moreno Garcia, Tania
    Abreu Blaya, Ricardo
    Bory Reyes, Juan
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 1147 - 1159
  • [44] A New Cauchy Integral Formula in the Complex Clifford Analysis
    Li, Zunfeng
    Yang, Heju
    Qiao, Yuying
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2018, 28 (04)
  • [45] A Cauchy Integral Formula for Infrapolymonogenic Functions in Clifford Analysis
    Blaya, Ricardo Abreu
    Reyes, Juan Bory
    Garcia, Arsenio Moreno
    Garcia, Tania Moreno
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2020, 30 (02)
  • [46] A Cauchy Integral Formula for Infrapolymonogenic Functions in Clifford Analysis
    Ricardo Abreu Blaya
    Juan Bory Reyes
    Arsenio Moreno García
    Tania Moreno García
    Advances in Applied Clifford Algebras, 2020, 30
  • [47] A Cauchy Integral Formula for Inframonogenic Functions in Clifford Analysis
    Arsenio Moreno García
    Tania Moreno García
    Ricardo Abreu Blaya
    Juan Bory Reyes
    Advances in Applied Clifford Algebras, 2017, 27 : 1147 - 1159
  • [48] JUMP OF THE MARTINELLI BOCHNER INTEGRAL FOR DOMAINS WITH PIECEWISE-SMOOTH BOUNDARIES
    PRENOV, BB
    TARKHANOV, NN
    SIBERIAN MATHEMATICAL JOURNAL, 1989, 30 (01) : 153 - 155
  • [49] A New Cauchy Integral Formula in the Complex Clifford Analysis
    Zunfeng Li
    Heju Yang
    Yuying Qiao
    Advances in Applied Clifford Algebras, 2018, 28
  • [50] The Boundary Behavior of the Bochner-Martinelli Integral in Domains with Conical Wedges
    Prenov, B. B.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2012, 5 (03): : 422 - 429