A New Cauchy Integral Formula in the Complex Clifford Analysis

被引:0
|
作者
Zunfeng Li
Heju Yang
Yuying Qiao
机构
[1] Hebei Normal University,College of Mathematics and Information Science
[2] Hebei University of Science and Technology,College of Science
来源
关键词
Complex Clifford algebra; Complex regular function; The Stoke’s formula; Cauchy–Pompeiu formula; Cauchy integral formula; 30E20; 30E25; 45E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we construct an analogue of Bochner–Martinelli kernel based on theory of functions of several complex variables in complex Clifford analysis, which has generalized complex differential forms with Clifford basis vectors. Using these complex differential forms, we obtain the Stoke’s formula of complex Clifford functions which are defined on a domain Ω⊂Cn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset C^{n+1}$$\end{document} and take values in a complex Clifford algebra Cl0,n(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cl_{0,n}(C)$$\end{document}. Then, we give a Stoke’s formula which has a classical form and an analogue of Cauchy–Pompeiu formula which is represented by Bochner–Martinelli kernel, and establish an analogue of Cauchy integral formula in complex Clifford analysis. It is possible to promote these results to complex manifold’s corresponding results in the Clifford analysis using the representation by generalized complex differential forms.
引用
收藏
相关论文
共 50 条
  • [21] A Compact Cauchy-Kovalevskaya Extension Formula in Discrete Clifford Analysis
    Denis Constales
    Hilde De Ridder
    Advances in Applied Clifford Algebras, 2014, 24 : 1005 - 1010
  • [22] A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis
    Hongfen Yuan
    Czechoslovak Mathematical Journal, 2017, 67 : 795 - 808
  • [23] Cauchy's integral theorem on Cauchy's integral formula
    Heffter, L
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1936, 175 (1/4): : 240 - 245
  • [24] A Cauchy integral formula in superspace
    De Bie, H.
    Sommen, F.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 : 709 - 722
  • [25] Noncommutative Cauchy Integral Formula
    Ghiloni, Riccardo
    Perotti, Alessandro
    Recupero, Vincenzo
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (02) : 289 - 306
  • [26] Noncommutative Cauchy Integral Formula
    Riccardo Ghiloni
    Alessandro Perotti
    Vincenzo Recupero
    Complex Analysis and Operator Theory, 2017, 11 : 289 - 306
  • [27] Integral representations in complex, hypercomplex and Clifford analysis
    Begehr, H
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2002, 13 (03) : 223 - 241
  • [28] On Cauchy and Martinelli-Bochner integral formulae in Hermitean Clifford analysis
    Brackx, F.
    De Knock, B.
    De Schepper, H.
    Sommen, F.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2009, 40 (03): : 395 - 416
  • [29] H-B Theorems of Cauchy Integral Operators in Clifford Analysis
    Wang, Yufeng
    Zhang, Zhongxiang
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2025, 35 (01)
  • [30] On Cauchy and Martinelli-Bochner integral formulae in Hermitean Clifford analysis
    F. Brackx
    B. De Knock
    H. De Schepper
    F. Sommen
    Bulletin of the Brazilian Mathematical Society, New Series, 2009, 40 : 395 - 416