Noncommutative Cauchy Integral Formula

被引:7
|
作者
Ghiloni, Riccardo [1 ]
Perotti, Alessandro [1 ]
Recupero, Vincenzo [2 ]
机构
[1] Univ Trento, Dipartimento Matemat, Via Sommar 14, I-38123 Trento, Italy
[2] Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
Cauchy integral formula; Functions of a hypercomplex variable; Quaternions; Octonions; Clifford algebras; REGULAR FUNCTIONS; FUNCTIONAL-CALCULUS; KERNEL; SERIES;
D O I
10.1007/s11785-016-0543-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to provide and prove the most general Cauchy integral formula for slice regular functions and for C-1 functions on a real alternative *-algebra. Slice regular functions represent a generalization of the classical concept of holomorphic function of a complex variable in the noncommutative and nonassociative settings. As an application, we obtain two kinds of local series expansion for slice regular functions.
引用
收藏
页码:289 / 306
页数:18
相关论文
共 50 条
  • [31] A Cauchy Integral Formula for Inframonogenic Functions in Clifford Analysis
    Arsenio Moreno García
    Tania Moreno García
    Ricardo Abreu Blaya
    Juan Bory Reyes
    Advances in Applied Clifford Algebras, 2017, 27 : 1147 - 1159
  • [32] Boundary value formula for the Cauchy integral on elliptic curve
    Mukhiddin I. Muminov
    A. H. M. Murid
    Journal of Pseudo-Differential Operators and Applications, 2018, 9 : 837 - 851
  • [33] A curious identity proved by Cauchy's integral formula
    Prodinger, Helmut
    MATHEMATICAL GAZETTE, 2005, 89 (515): : 266 - 267
  • [34] Plemelj formula of Cauchy type integral on Stein manifolds
    Chen, LP
    Lin, LG
    ACTA MATHEMATICA SCIENTIA, 2005, 25 (04) : 647 - 657
  • [35] A Cauchy Integral Formula for Infrapolymonogenic Functions in Clifford Analysis
    Blaya, Ricardo Abreu
    Reyes, Juan Bory
    Garcia, Arsenio Moreno
    Garcia, Tania Moreno
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2020, 30 (02)
  • [36] Determination of eigenmodes by using Cauchy's integral formula
    Conradi, O
    ELECTRONICS LETTERS, 1998, 34 (19) : 1865 - 1866
  • [37] Fast Multipole Method Using the Cauchy Integral Formula
    Cecka, Cristopher
    Letourneau, Pierre-David
    Darve, Eric
    NUMERICAL ANALYSIS OF MULTISCALE COMPUTATIONS, 2012, 82 : 127 - +
  • [38] Boundary value formula for the Cauchy integral on elliptic curve
    Muminov, Mukhiddin I.
    Murid, A. H. M.
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2018, 9 (04) : 837 - 851
  • [39] Cauchy integral formula and Plemelj formula of bihypermonogenic functions in real Clifford analysis
    Bian, Xiaoli
    Eriksson, Sirkka-Liisa
    Li, Junxia
    Qiao, Yuying
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2009, 54 (10) : 957 - 976
  • [40] A Local Cauchy Integral Formula for Slice-Regular Functions
    Perotti, Alessandro
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2024, 24 (01) : 185 - 203