Random walks on hyperspheres of arbitrary dimensions

被引:18
|
作者
Caillol, JM [1 ]
机构
[1] Univ Paris 11, UMR 8267, Phys Theor Lab, F-91405 Orsay, France
来源
关键词
D O I
10.1088/0305-4470/37/9/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider random walks on the surface of the sphere Sn-1 (n greater than or equal to 2) of the n-dimensional Euclidean space E-n, in short a hypersphere. By solving the diffusion equation-in Sn-1 we show that the usual law <r(2)> proportional to t valid in En-1 should be replaced in Sn-1 by the generic law <costheta> proportional to exp(-t/tau), where theta denotes the angular displacement of the walker. More generally one has <C-L(n/2-1)(cos theta)> proportional to exp(-t/tau(L,n)) where C-L(n/2-1) is a Gegenbauer polynomial. Conjectures concerning random walks on a fractal inscribed in Sn-1 are given tentatively.
引用
收藏
页码:3077 / 3083
页数:7
相关论文
共 50 条
  • [21] Exact shapes of random walks in two dimensions
    Wei, GY
    PHYSICA A, 1995, 222 (1-4): : 152 - 154
  • [22] Recurrence for persistent random walks in two dimensions
    Lenci, Marco
    STOCHASTICS AND DYNAMICS, 2007, 7 (01) : 53 - 74
  • [23] Active random walks in one and two dimensions
    Jose, Stephy
    Mandal, Dipanjan
    Barma, Mustansir
    Ramola, Kabir
    PHYSICAL REVIEW E, 2022, 105 (06)
  • [24] Critical dimensions for random walks on random-walk chains
    Rabinovich, S
    Roman, HE
    Havlin, S
    Bunde, A
    PHYSICAL REVIEW E, 1996, 54 (04): : 3606 - 3608
  • [25] Frequent points for random walks in two dimensions
    Bass, Richard F.
    Rosen, Jay
    ELECTRONIC JOURNAL OF PROBABILITY, 2007, 12
  • [26] Random walks on Sierpinski gaskets of different dimensions
    Weber, Sebastian
    Klafter, Joseph
    Blumen, Alexander
    PHYSICAL REVIEW E, 2010, 82 (05):
  • [27] Random walks and plane arrangements in three dimensions
    Billera, LJ
    Brown, KS
    Diaconis, P
    AMERICAN MATHEMATICAL MONTHLY, 1999, 106 (06): : 502 - 524
  • [28] Random walks and quantum gravity in two dimensions
    Duplantier, B
    PHYSICAL REVIEW LETTERS, 1998, 81 (25) : 5489 - 5492
  • [29] THE DIMENSIONS OF THE RANGE OF RANDOM WALKS IN TIME-RANDOM ENVIRONMENTS
    张晓敏
    胡迪鹤
    ActaMathematicaScientia, 2006, (04) : 615 - 628
  • [30] Exact multifractal spectra for arbitrary Laplacian random walks
    Hastings, MB
    PHYSICAL REVIEW LETTERS, 2002, 88 (05) : 4