Random walks on hyperspheres of arbitrary dimensions

被引:18
|
作者
Caillol, JM [1 ]
机构
[1] Univ Paris 11, UMR 8267, Phys Theor Lab, F-91405 Orsay, France
来源
关键词
D O I
10.1088/0305-4470/37/9/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider random walks on the surface of the sphere Sn-1 (n greater than or equal to 2) of the n-dimensional Euclidean space E-n, in short a hypersphere. By solving the diffusion equation-in Sn-1 we show that the usual law <r(2)> proportional to t valid in En-1 should be replaced in Sn-1 by the generic law <costheta> proportional to exp(-t/tau), where theta denotes the angular displacement of the walker. More generally one has <C-L(n/2-1)(cos theta)> proportional to exp(-t/tau(L,n)) where C-L(n/2-1) is a Gegenbauer polynomial. Conjectures concerning random walks on a fractal inscribed in Sn-1 are given tentatively.
引用
收藏
页码:3077 / 3083
页数:7
相关论文
共 50 条
  • [41] TRAPPING OF RANDOM-WALKS IN 2 AND 3 DIMENSIONS
    HAVLIN, S
    DISHON, M
    KIEFER, JE
    WEISS, GH
    PHYSICAL REVIEW LETTERS, 1984, 53 (05) : 407 - 410
  • [42] Capacity of the Range of Branching Random Walks in Low Dimensions
    Bai, Tianyi
    Hu, Yueyun
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2022, 316 (01) : 26 - 39
  • [43] Hyperspheres of weighted distances in arbitrary dimension
    Mukherjee, Jayanta
    PATTERN RECOGNITION LETTERS, 2013, 34 (02) : 117 - 123
  • [44] The Ising model on random lattices in arbitrary dimensions
    Bonzom, Valentin
    Gurau, Razvan
    Rivasseau, Vincent
    PHYSICS LETTERS B, 2012, 711 (01) : 88 - 96
  • [45] Discrete fractal dimensions of the ranges of random walks in Zd associate with random conductances
    Xiao, Yimin
    Zheng, Xinghua
    PROBABILITY THEORY AND RELATED FIELDS, 2013, 156 (1-2) : 1 - 26
  • [46] Monotonicity and regularity of the speed for excited random walks in higher dimensions
    Cong-Dan Pham
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20
  • [47] Random walks and Schroedinger's equation in (2 + 1) dimensions
    Ord, G. N.
    Deakin, A. S.
    Journal of Physics A: Mathematical and General, 30 (03):
  • [48] A CLOSED FORM FOR THE DENSITY FUNCTIONS OF RANDOM WALKS IN ODD DIMENSIONS
    Borwein, Jonathan M.
    Sinnamon, Corwin W.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 93 (02) : 330 - 339
  • [49] Active phase for activated random walks on the lattice in all dimensions
    Forien, Nicolas
    Gaudilliere, Alexandre
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (02): : 1188 - 1214
  • [50] Cover times for Brownian motion and random walks in two dimensions
    Dembo, A
    Peres, Y
    Rosen, J
    Zeitouni, O
    ANNALS OF MATHEMATICS, 2004, 160 (02) : 433 - 464