A CLOSED FORM FOR THE DENSITY FUNCTIONS OF RANDOM WALKS IN ODD DIMENSIONS

被引:5
|
作者
Borwein, Jonathan M. [1 ]
Sinnamon, Corwin W. [2 ]
机构
[1] Univ Newcastle, CARMA, Newcastle, NSW 2303, Australia
[2] Univ Waterloo, Waterloo, ON N2L 3G1, Canada
关键词
short random walks; generalised hypergeometric functions; Bessel integrals;
D O I
10.1017/S0004972715001112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive an explicit piecewise-polynomial closed form for the probability density function of the distance travelled by a uniform random walk in an odd-dimensional space.
引用
收藏
页码:330 / 339
页数:10
相关论文
共 50 条
  • [1] Closed-form solutions to the dynamics of confined biased lattice random walks in arbitrary dimensions
    Sarvaharman, Seeralan
    Giuggioli, Luca
    PHYSICAL REVIEW E, 2020, 102 (06)
  • [2] RANDOM WALKS AND DIMENSIONS OF RANDOM TREES
    Konsowa, Mokhtar H.
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2010, 13 (04) : 677 - 689
  • [3] Multiple dimensions for random walks
    Topgaard, Daniel
    JOURNAL OF MAGNETIC RESONANCE, 2019, 306 : 150 - 154
  • [4] Random walks in varying dimensions
    Benjamini, I
    Pemantle, R
    Peres, Y
    JOURNAL OF THEORETICAL PROBABILITY, 1996, 9 (01) : 231 - 244
  • [5] Random walks in a closed space
    Lemke, N
    Campbell, IA
    PHYSICA A, 1996, 230 (3-4): : 554 - 562
  • [6] CLOSED FORM APPROXIMATIONS FOR RANDOM ERRORS IN DISTANCE FUNCTIONS
    JACKSON, DM
    COMPUTER JOURNAL, 1973, 16 (01): : 52 - 56
  • [7] Closed-form solutions for continuous time random walks on finite chains
    Flomenbom, O
    Klafter, J
    PHYSICAL REVIEW LETTERS, 2005, 95 (09)
  • [8] Random walk on random walks: higher dimensions
    Blondel, Oriane
    Hilario, Marcelo R.
    dos Santos, Renato S.
    Sidoravicius, Vladas
    Teixeira, Augusto
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [9] Fractal dimensions and random walks on random trees
    Konsowa, MH
    Oraby, TF
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 116 (02) : 333 - 342
  • [10] Random walks on hyperspheres of arbitrary dimensions
    Caillol, JM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (09): : 3077 - 3083