共 50 条
Random walks on hyperspheres of arbitrary dimensions
被引:18
|作者:
Caillol, JM
[1
]
机构:
[1] Univ Paris 11, UMR 8267, Phys Theor Lab, F-91405 Orsay, France
来源:
关键词:
D O I:
10.1088/0305-4470/37/9/001
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
We consider random walks on the surface of the sphere Sn-1 (n greater than or equal to 2) of the n-dimensional Euclidean space E-n, in short a hypersphere. By solving the diffusion equation-in Sn-1 we show that the usual law <r(2)> proportional to t valid in En-1 should be replaced in Sn-1 by the generic law <costheta> proportional to exp(-t/tau), where theta denotes the angular displacement of the walker. More generally one has <C-L(n/2-1)(cos theta)> proportional to exp(-t/tau(L,n)) where C-L(n/2-1) is a Gegenbauer polynomial. Conjectures concerning random walks on a fractal inscribed in Sn-1 are given tentatively.
引用
收藏
页码:3077 / 3083
页数:7
相关论文