Random walks on hyperspheres of arbitrary dimensions

被引:18
|
作者
Caillol, JM [1 ]
机构
[1] Univ Paris 11, UMR 8267, Phys Theor Lab, F-91405 Orsay, France
来源
关键词
D O I
10.1088/0305-4470/37/9/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider random walks on the surface of the sphere Sn-1 (n greater than or equal to 2) of the n-dimensional Euclidean space E-n, in short a hypersphere. By solving the diffusion equation-in Sn-1 we show that the usual law <r(2)> proportional to t valid in En-1 should be replaced in Sn-1 by the generic law <costheta> proportional to exp(-t/tau), where theta denotes the angular displacement of the walker. More generally one has <C-L(n/2-1)(cos theta)> proportional to exp(-t/tau(L,n)) where C-L(n/2-1) is a Gegenbauer polynomial. Conjectures concerning random walks on a fractal inscribed in Sn-1 are given tentatively.
引用
收藏
页码:3077 / 3083
页数:7
相关论文
共 50 条
  • [1] RANDOM WALKS AND DIMENSIONS OF RANDOM TREES
    Konsowa, Mokhtar H.
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2010, 13 (04) : 677 - 689
  • [2] Dimension walks on hyperspheres
    Emery, Xavier
    Peron, Ana Paula
    Porcu, Emilio
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (05):
  • [3] Dimension walks on hyperspheres
    Emery, Xavier
    Peron, Ana Paula
    Porcu, Emilio
    Computational and Applied Mathematics, 2022, 41 (05)
  • [4] Dimension walks on hyperspheres
    Xavier Emery
    Ana Paula Peron
    Emilio Porcu
    Computational and Applied Mathematics, 2022, 41
  • [5] Multiple dimensions for random walks
    Topgaard, Daniel
    JOURNAL OF MAGNETIC RESONANCE, 2019, 306 : 150 - 154
  • [6] Random walks in varying dimensions
    Benjamini, I
    Pemantle, R
    Peres, Y
    JOURNAL OF THEORETICAL PROBABILITY, 1996, 9 (01) : 231 - 244
  • [7] Random walk on random walks: higher dimensions
    Blondel, Oriane
    Hilario, Marcelo R.
    dos Santos, Renato S.
    Sidoravicius, Vladas
    Teixeira, Augusto
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [8] Scaling random walks on arbitrary sets
    Harris, SC
    Williams, D
    Sibson, R
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 125 : 535 - 544
  • [9] Fractal dimensions and random walks on random trees
    Konsowa, MH
    Oraby, TF
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 116 (02) : 333 - 342
  • [10] Random lazy random walks on arbitrary finite groups
    Hildebrand, M
    JOURNAL OF THEORETICAL PROBABILITY, 2001, 14 (04) : 1019 - 1034