Dimension walks on hyperspheres

被引:1
|
作者
Emery, Xavier [1 ,2 ]
Peron, Ana Paula [3 ]
Porcu, Emilio [4 ,5 ]
机构
[1] Univ Chile, Dept Min Engn, Ave Beauchef 850, Santiago 8370448, Chile
[2] Univ Chile, Adv Min Technol Ctr, Ave Beauchef 850, Santiago 8370448, Chile
[3] Univ Sao Paulo, Dept Math, Trabalhador Sao Carlense Ave, BR-13566590 Sao Carlos, SP, Brazil
[4] Khalifa Univ, Dept Math, Al Ain Rd, Abu Dhabi 127788, U Arab Emirates
[5] Trinity Coll Dublin, Sch Comp Sci & Stat, Coll Green, Dublin 2, Ireland
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2022年 / 41卷 / 05期
基金
巴西圣保罗研究基金会; 瑞典研究理事会;
关键词
Isotropic covariance functions; Positive definiteness; Montee; Descente; Schoenberg sequences; Real spheres; DEFINITE; POLYNOMIALS; EXPANSION;
D O I
10.1007/s40314-022-01912-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The seminal works by George Matheron provide the foundations of walks through dimensions for positive definite functions defined in Euclidean spaces. For a d-dimensional space and a class of positive definite functions therein, Matheron called montee and descente two operators that allow for obtaining new classes of positive definite functions in lower and higher dimensional spaces, respectively. The present work examines three different constructions to dimension walks for continuous positive definite functions on hyperspheres. First, we define montee and descente operators on the basis of the spectral representation of isotropic covariance functions on hyperspheres. The second approach provides walks through dimensions following Yadrenko's construction of random fields on spheres. Under this approach, walks through unit dimensions are not permissible, while it is possible to walk under +/- 2 dimensions from a covariance function that is valid on a d-dimensional sphere. The third construction relies on the integration of a given isotropic random field over latitudinal arcs. In each approach, we provide spectral representations of the montee and descente as well as illustrative examples.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Dimension walks on hyperspheres
    Emery, Xavier
    Peron, Ana Paula
    Porcu, Emilio
    Computational and Applied Mathematics, 2022, 41 (05)
  • [2] Dimension walks on hyperspheres
    Xavier Emery
    Ana Paula Peron
    Emilio Porcu
    Computational and Applied Mathematics, 2022, 41
  • [3] Random walks on hyperspheres of arbitrary dimensions
    Caillol, JM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (09): : 3077 - 3083
  • [4] Hyperspheres of weighted distances in arbitrary dimension
    Mukherjee, Jayanta
    PATTERN RECOGNITION LETTERS, 2013, 34 (02) : 117 - 123
  • [5] COBE satellite measurement, hyperspheres, superstrings and the dimension of spacetime
    DAMTP, Cambridge, United Kingdom
    Chaos Solitons Fractals, 8 (1445-1471):
  • [6] COBE satellite measurement, hyperspheres, superstrings and the dimension of spacetime
    El Naschie, MS
    CHAOS SOLITONS & FRACTALS, 1998, 9 (08) : 1445 - 1471
  • [7] Quantum Walks in Low Dimension
    Tate, Tatsuya
    GEOMETRIC METHODS IN PHYSICS, 2016, : 261 - 278
  • [8] THEORY OF CORRELATED WALKS IN ONE DIMENSION
    FUJITA, S
    CHEN, JT
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (01): : 53 - 53
  • [9] RANDOM-WALKS IN NONINTEGER DIMENSION
    BENDER, CM
    BOETTCHER, S
    MEAD, LR
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (01) : 368 - 388
  • [10] Dimension walks on Sd x R
    Bingham, N. H.
    Symons, Tasmin L.
    STATISTICS & PROBABILITY LETTERS, 2019, 147 : 12 - 17