Recurrence for persistent random walks in two dimensions

被引:5
|
作者
Lenci, Marco [1 ]
机构
[1] Stevens Inst Technol, Dept Math Sci, Hoboken, NJ 07030 USA
基金
美国国家科学基金会;
关键词
persistent random walks; Newtonian random walks; recurrence; random environment; dual graph; Schmidt-Conze theorem; Toth environments;
D O I
10.1142/S0219493707001937
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss the question of recurrence for persistent, or Newtonian, random walks in Z(2), i.e. random walks whose transition probabilities depend both on the walker's position and incoming direction. We use results by Toth and Schmidt-Conze to prove recurrence for a large class of such processes, including all "invertible" walks in elliptic random environments. Furthermore, rewriting our Newtonian walks as ordinary random walks in a suitable graph, we gain a better idea of the geometric features of the problem, and obtain further examples of recurrence.
引用
收藏
页码:53 / 74
页数:22
相关论文
共 50 条
  • [1] A note on the intersections of two random walks in two dimensions
    Vogel, Quirin
    STATISTICS & PROBABILITY LETTERS, 2021, 178
  • [2] Late points for random walks in two dimensions
    Dembo, A
    Peres, Y
    Rosen, J
    Zeitouni, O
    ANNALS OF PROBABILITY, 2006, 34 (01): : 219 - 263
  • [3] Exact shapes of random walks in two dimensions
    Wei, GY
    PHYSICA A, 1995, 222 (1-4): : 152 - 154
  • [4] Active random walks in one and two dimensions
    Jose, Stephy
    Mandal, Dipanjan
    Barma, Mustansir
    Ramola, Kabir
    PHYSICAL REVIEW E, 2022, 105 (06)
  • [5] Frequent points for random walks in two dimensions
    Bass, Richard F.
    Rosen, Jay
    ELECTRONIC JOURNAL OF PROBABILITY, 2007, 12
  • [6] Random walks and quantum gravity in two dimensions
    Duplantier, B
    PHYSICAL REVIEW LETTERS, 1998, 81 (25) : 5489 - 5492
  • [7] Recurrence and windings of two revolving random walks
    Bosi, Gianluca
    Hu, Yiping
    Peres, Yuval
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [8] Recurrence of multidimensional persistent random walks. Fourier and series criteria
    Cenac, Peggy
    De Loynes, Basile
    Offret, Yoann
    Rousselle, Arnaud
    BERNOULLI, 2020, 26 (02) : 858 - 892
  • [9] Persistent Random Walks. I. Recurrence Versus Transience
    Peggy Cénac
    Arnaud Le Ny
    Basile de Loynes
    Yoann Offret
    Journal of Theoretical Probability, 2018, 31 : 232 - 243
  • [10] Persistent Random Walks. I. Recurrence Versus Transience
    Cenac, Peggy
    Le Ny, Arnaud
    de Loynes, Basile
    Offret, Yoann
    JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (01) : 232 - 243