THE DIMENSIONS OF THE RANGE OF RANDOM WALKS IN TIME-RANDOM ENVIRONMENTS

被引:0
|
作者
张晓敏
胡迪鹤
机构
[1] Faculty of Science Ningbo University Ningbo 315211
[2] China
[3] School of Mathematics and Statistics Wuhan University
[4] Wuhan 430072
关键词
Random walks in time-random environments; discrete fractal; Hausdorff dimension; Packing dimension;
D O I
暂无
中图分类号
O211.6 [随机过程];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Suppose {Xn} is a random walk in time-random environment with state space Zd,|Xn| approaches infinity, then under some reasonable conditions of stability, the upper bound of the discrete Packing dimension of the range of {Xn} is any stability index a. Moreover, if the environment is stationary, a similar result for the lower bound of the discrete Hausdorff dimension is derived. Thus, the range is a fractal set for almost every environment.
引用
收藏
页码:615 / 628
页数:14
相关论文
共 50 条
  • [1] The dimensions of the range of random walks in time-random environments
    Zhang Xiaomin
    Hu Dihe
    ACTA MATHEMATICA SCIENTIA, 2006, 26 (04) : 615 - 628
  • [2] Coupled continuous time-random walks in quenched random environment
    Magdziarz, M.
    Szczotka, W.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [3] Branching random walks with random environments in time
    Huang, Chunmao
    Liang, Xingang
    Liu, Quansheng
    FRONTIERS OF MATHEMATICS IN CHINA, 2014, 9 (04) : 835 - 842
  • [4] Branching random walks with random environments in time
    Chunmao Huang
    Xingang Liang
    Quansheng Liu
    Frontiers of Mathematics in China, 2014, 9 : 835 - 842
  • [5] Random walks in random environments
    Zeitouni, Ofer
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (40): : R433 - R464
  • [6] Cutoff and mixing time for transient random walks in random environments
    Gantert, Nina
    Kochler, Thomas
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2013, 10 (01): : 449 - 484
  • [7] RANDOM WALKS AND DIMENSIONS OF RANDOM TREES
    Konsowa, Mokhtar H.
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2010, 13 (04) : 677 - 689
  • [8] Capacity of the Range of Branching Random Walks in Low Dimensions
    Tianyi Bai
    Yueyun Hu
    Proceedings of the Steklov Institute of Mathematics, 2022, 316 : 26 - 39
  • [9] Capacity of the Range of Branching Random Walks in Low Dimensions
    Bai, Tianyi
    Hu, Yueyun
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2022, 316 (01) : 26 - 39
  • [10] Random Walks in Cooling Random Environments
    Avena, Luca
    den Hollander, Frank
    SOJOURNS IN PROBABILITY THEORY AND STATISTICAL PHYSICS - III: INTERACTING PARTICLE SYSTEMS AND RANDOM WALKS, A FESTSCHRIFT FOR CHARLES M. NEWMAN, 2019, 300 : 23 - 42