A Graph Auto-encoder Model of Derivational Morphology

被引:0
|
作者
Hofmann, Valentin [1 ,3 ]
Schutze, Hinrich [3 ]
Pierrehumbert, Janet B. [1 ,2 ]
机构
[1] Univ Oxford, Fac Linguist, Oxford, England
[2] Univ Oxford, Dept Engn Sci, Oxford, England
[3] Ludwig Maximilians Univ Munchen, Ctr Informat & Language Proc, Munich, Germany
基金
英国艺术与人文研究理事会; 欧洲研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There has been little work on modeling the morphological well-formedness (MWF) of derivatives, a problem judged to be complex and difficult in linguistics (Bauer, 2019). We present a graph auto-encoder that learns embeddings capturing information about the compatibility of affixes and stems in derivation. The auto-encoder models MWF in English surprisingly well by combining syntactic and semantic information with associative information from the mental lexicon.
引用
收藏
页码:1127 / 1138
页数:12
相关论文
共 50 条
  • [31] A Variational Auto-Encoder Model for Underwater Acoustic Channels
    Wei, Li
    Wang, Zhaohui
    [J]. WUWNET'21: THE 15TH ACM INTERNATIONAL CONFERENCE ON UNDERWATER NETWORKS & SYSTEMS, 2021,
  • [32] A deep auto-encoder model for gene expression prediction
    Xie, Rui
    Wen, Jia
    Quitadamo, Andrew
    Cheng, Jianlin
    Shi, Xinghua
    [J]. BMC GENOMICS, 2017, 18
  • [33] COMPOUND VARIATIONAL AUTO-ENCODER
    Su, Shang-Yu
    Lin, Shan-Wei
    Chen, Yun-Nung
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3577 - 3581
  • [34] Hamiltonian Variational Auto-Encoder
    Caterini, Anthony L.
    Doucet, Arnaud
    Sejdinovic, Dino
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [35] A Variational Auto-Encoder Model for Stochastic Point Processes
    Mehrasa, Nazanin
    Jyothi, Akash Abdu
    Durand, Thibaut
    He, Jiawei
    Sigal, Leonid
    Mori, Greg
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3160 - 3169
  • [36] Graph embedding clustering: Graph attention auto-encoder with cluster-specificity distribution
    Xu, Huiling
    Xia, Wei
    Gao, Quanxue
    Han, Jungong
    Gao, Xinbo
    [J]. NEURAL NETWORKS, 2021, 142 : 221 - 230
  • [37] Transform Invariant Auto-encoder
    Matsuo, Tadashi
    Fukuhara, Hiroya
    Shimada, Nobutaka
    [J]. 2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 2359 - 2364
  • [38] An Auto-Encoder Multitask LSTM Model for Boundary Localization
    Liu, Yu-Ting
    Chen, Jen-Jee
    Tseng, Yu-Chee
    Li, Frank Y.
    [J]. IEEE SENSORS JOURNAL, 2022, 22 (11) : 10940 - 10953
  • [39] Depth Completion Auto-Encoder
    Lu, Kaiyue
    Barnes, Nick
    Anwar, Saeed
    Zheng, Liang
    [J]. 2022 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW 2022), 2022, : 63 - 73
  • [40] Local Feature Hashing with Graph Regularized Binary Auto-encoder for Face Recognition
    Chen, Jing
    Zu, Yunxiao
    [J]. 2019 11TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2019,