A Variational Auto-Encoder Model for Underwater Acoustic Channels

被引:1
|
作者
Wei, Li [1 ]
Wang, Zhaohui [1 ]
机构
[1] Michigan Technol Univ, Houghton, MI 49931 USA
关键词
Generative model; variational autoencoder; underwater acoustic communication;
D O I
10.1145/3491315.3491330
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An underwater acoustic (UWA) channel model with high validity and re-usability is widely demanded. In this paper, we propose a variational auto-encoder (VAE)-based deep generative model which learns an abstract representation of the UWA channel impulse responses (CIRs) and can generate CIR samples with similar features. A customized training process is proposed to avoid the model collapse and being trapped in a gradient pit. The proposed deep generative model is validated using field experimental data sets.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] COMPOUND VARIATIONAL AUTO-ENCODER
    Su, Shang-Yu
    Lin, Shan-Wei
    Chen, Yun-Nung
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3577 - 3581
  • [2] Hamiltonian Variational Auto-Encoder
    Caterini, Anthony L.
    Doucet, Arnaud
    Sejdinovic, Dino
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [3] A Variational Auto-Encoder Model for Stochastic Point Processes
    Mehrasa, Nazanin
    Jyothi, Akash Abdu
    Durand, Thibaut
    He, Jiawei
    Sigal, Leonid
    Mori, Greg
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3160 - 3169
  • [4] Variational Auto-Encoder for text generation
    Hu, Haojin
    Liao, Mengfan
    Mao, Weiming
    Liu, Wei
    Zhang, Chao
    Jing, Yanmei
    [J]. PROCEEDINGS OF 2020 IEEE 5TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2020), 2020, : 595 - 598
  • [5] Deep variational auto-encoder for text classification
    Xie, Lin
    Liu, Genggeng
    Lian, Hongfei
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL CYBER PHYSICAL SYSTEMS (ICPS 2019), 2019, : 737 - 742
  • [6] Cascade Variational Auto-Encoder for Hierarchical Disentanglement
    Lin, Fudong
    Yuan, Xu
    Peng, Lu
    Tzeng, Nian-Feng
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1248 - 1257
  • [7] Reinforcement Learning on Robot with Variational Auto-Encoder
    Chen, Yiwen
    Yang, Chenguang
    Feng, Ying
    [J]. PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC2019), 2020, 582 : 675 - 684
  • [8] A Context-Aware Variational Auto-Encoder Model for Text Generation
    Ma, Zhiqiang
    Wang, Chunyu
    Shen, Ji
    Du, Baoxiang
    [J]. 2020 IEEE INTL SYMP ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, INTL CONF ON BIG DATA & CLOUD COMPUTING, INTL SYMP SOCIAL COMPUTING & NETWORKING, INTL CONF ON SUSTAINABLE COMPUTING & COMMUNICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2020), 2020, : 1176 - 1182
  • [9] A Co-Embedding Model with Variational Auto-Encoder for Knowledge Graphs
    Xie, Luodi
    Huang, Huimin
    Du, Qing
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [10] A Lightweight Unsupervised Intrusion Detection Model Based on Variational Auto-Encoder
    Ren, Yi
    Feng, Kanghui
    Hu, Fei
    Chen, Liangyin
    Chen, Yanru
    [J]. SENSORS, 2023, 23 (20)