A Graph Auto-encoder Model of Derivational Morphology

被引:0
|
作者
Hofmann, Valentin [1 ,3 ]
Schutze, Hinrich [3 ]
Pierrehumbert, Janet B. [1 ,2 ]
机构
[1] Univ Oxford, Fac Linguist, Oxford, England
[2] Univ Oxford, Dept Engn Sci, Oxford, England
[3] Ludwig Maximilians Univ Munchen, Ctr Informat & Language Proc, Munich, Germany
基金
英国艺术与人文研究理事会; 欧洲研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There has been little work on modeling the morphological well-formedness (MWF) of derivatives, a problem judged to be complex and difficult in linguistics (Bauer, 2019). We present a graph auto-encoder that learns embeddings capturing information about the compatibility of affixes and stems in derivation. The auto-encoder models MWF in English surprisingly well by combining syntactic and semantic information with associative information from the mental lexicon.
引用
收藏
页码:1127 / 1138
页数:12
相关论文
共 50 条
  • [21] Effective Decoding in Graph Auto-Encoder Using Triadic Closure
    Shi, Han
    Fan, Haozheng
    Kwok, James T.
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 906 - 913
  • [22] Active Learning with Multi-Granular Graph Auto-Encoder
    He, Yi
    Yuan, Xu
    Tzeng, Nian-Feng
    Wu, Xindong
    [J]. 20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 1058 - 1063
  • [23] Towards Faster Deep Graph Clustering via Efficient Graph Auto-Encoder
    Ding, Shifei
    Wu, Benyu
    Ding, Ling
    Xu, Xiao
    Guo, Lili
    Liao, Hongmei
    Wu, Xindong
    [J]. ACM Transactions on Knowledge Discovery from Data, 2024, 18 (08)
  • [24] Inductive Topic Variational Graph Auto-Encoder for Text Classification
    Xie, Qianqian
    Huang, Jimin
    Du, Pan
    Peng, Min
    Nie, Jian-Yun
    [J]. 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), 2021, : 4218 - 4227
  • [25] HeGAE-AC: Heterogeneous graph auto-encoder for attribute completion
    Chen, Yejia
    Liu, Ye
    [J]. KNOWLEDGE-BASED SYSTEMS, 2024, 287
  • [26] Graph-Collaborated Auto-Encoder Hashing for Multiview Binary Clustering
    Wang, Huibing
    Yao, Mingze
    Jiang, Guangqi
    Mi, Zetian
    Fu, Xianping
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (07) : 10121 - 10133
  • [27] Role-Oriented Graph Auto-encoder Guided by Structural Information
    Guo, Xuan
    Zhang, Wang
    Wang, Wenjun
    Yu, Yang
    Wang, Yinghui
    Jiao, Pengfei
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT II, 2020, 12113 : 466 - 481
  • [28] Multi-Modal Variational Graph Auto-Encoder for Recommendation Systems
    Yi, Jing
    Chen, Zhenzhong
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 1067 - 1079
  • [29] ProtoMGAE: Prototype-Aware Masked Graph Auto-Encoder for Graph Representation Learning
    Zheng, Yimei
    Jia, Caiyan
    [J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (06)
  • [30] A deep auto-encoder model for gene expression prediction
    Rui Xie
    Jia Wen
    Andrew Quitadamo
    Jianlin Cheng
    Xinghua Shi
    [J]. BMC Genomics, 18