Role-Oriented Graph Auto-encoder Guided by Structural Information

被引:10
|
作者
Guo, Xuan [1 ]
Zhang, Wang [1 ]
Wang, Wenjun [1 ]
Yu, Yang [1 ]
Wang, Yinghui [1 ]
Jiao, Pengfei [1 ,2 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300350, Peoples R China
[2] Tianjin Univ, Ctr Biosafety Res & Strategy, Tianjin 300092, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Role discovery; Network embedding; Graph convolution networks; Graph auto-encoder;
D O I
10.1007/978-3-030-59416-9_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Roles in a complex network usually represent the local connectivity patterns of nodes, which reflect the functions or behaviors of corresponding entities. Role discovery has great meaning for understanding the formation and evolution of networks. While the importance of role discovery in networks has been realized gradually, a variety of approaches of role-oriented network representation learning are proposed. Almost all the existing approaches are dependent on manual high-order structural properties which are always fragmentary. They suffer from unstable performances and poor generalization ability, because their handcraft structural features sometimes miss the characteristics of different networks. In addition, graph neural networks (GNNs) have great potential to automatically capture structural properties, but it is hard to be given the rein to for the difficulty of designing role-oriented unsupervised loss. To overcome these challenges, we provide an idea that leverage low-dimensional extracted structural features as guidance to train graph neural networks. Based on the idea, we proposed GAS, a novel graph auto-encoder guided by structural information, to learn role-oriented representations for nodes. Results of extensive experiments show that GAS has better performance than other state-of-the-art approaches.
引用
收藏
页码:466 / 481
页数:16
相关论文
共 50 条
  • [1] Wasserstein Graph Auto-Encoder
    Chu, Yan
    Li, Haozhuang
    Ning, Hui
    Zhao, Qingchao
    [J]. ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT I, 2022, 13155 : 85 - 99
  • [2] An Ensemble Net of Convolutional Auto-Encoder and Graph Auto-Encoder for Auto-Diagnosis
    Li, Jianqiang
    Ji, Changping
    Yan, Guokai
    You, Linlin
    Chen, Jie
    [J]. IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2021, 13 (01) : 189 - 199
  • [3] Embedding Graph Auto-Encoder for Graph Clustering
    Zhang, Hongyuan
    Li, Pei
    Zhang, Rui
    Li, Xuelong
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) : 9352 - 9362
  • [4] GRAPH AUTO-ENCODER FOR GRAPH SIGNAL DENOISING
    Tien Huu Do
    Duc Minh Nguyen
    Deligiannis, Nikos
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3322 - 3326
  • [5] Feature Selection Guided Auto-Encoder
    Wang, Shuyang
    Ding, Zhengming
    Fu, Yun
    [J]. THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2725 - 2731
  • [6] Masked Graph Auto-Encoder Constrained Graph Pooling
    Liu, Chuang
    Zhan, Yibing
    Ma, Xueqi
    Tao, Dapeng
    Du, Bo
    Hu, Wenbin
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II, 2023, 13714 : 377 - 393
  • [7] A Graph Auto-encoder Model of Derivational Morphology
    Hofmann, Valentin
    Schutze, Hinrich
    Pierrehumbert, Janet B.
    [J]. 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), 2020, : 1127 - 1138
  • [8] Rethinking Graph Auto-Encoder Models for Attributed Graph Clustering
    Mrabah, Nairouz
    Bouguessa, Mohamed
    Touati, Mohamed Fawzi
    Ksantini, Riadh
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (09) : 9037 - 9053
  • [9] Compressing Knowledge Graph Embedding with Relational Graph Auto-encoder
    Zhang, Shiyu
    Zhang, Zhao
    Zhuang, Fuzhen
    Shi, Zhiping
    Han, Xu
    [J]. PROCEEDINGS OF 2020 IEEE 10TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC 2020), 2020, : 366 - 370
  • [10] Adaptive Graph Auto-Encoder for General Data Clustering
    Li, Xuelong
    Zhang, Hongyuan
    Zhang, Rui
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9725 - 9732